
VOLUME 38, NUMBER 10 PHYSICAL REVIEW LETTERS 7 MARCH 1977

(8) .
' J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498

(1954).
"J.Friedel, in The Physics of Metals, edited by

J. M. Ziman (Cambridge Univ. Press, London, 1969),
Chap. 8.

2 R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C

5, 2845 (1972), and 8, 2591 (1975).
'B. N. Keeler and G. C. Kennedy, American Institute

of Physics Handbook (McGraw-Hill, New York, 1972),
Sect. 4d.

L. Liu, J. Phys. Chem. Solids 36, 31 (1975).
that c/a is about 1.55 at the transition from

Ref. 22.
See first paper of Ref. 9, Sect. 3.

2'See second paper of Ref. 9, Fig. 2.
~R. L, Johannes, B. Haydock, and V. Heine, Phys.

Rev. Lett. 36, 372 (1976).

Phase Transition in an Ising Model near the Percolation Threshold*

Michael J. Stephen and G. S. Grest
Serin Physics Laboratory, .RutI, ers University, Piscataway, New Jersey 08854

(Received 18 December 1976)

The phase transition near the percolation threshold in an Ising model with random ex-
change is investigated. The mean-field theory of the transition is discussed. The cross-
over exponent cp and susceptibility are caluclated in 6 —& dimensions using renormaliza-
tion-group methods with the result q =1+0(e~). y is also shown to be 1 near one dimen-
sion.

We consider an Ising model in which the near-
est-neighbor exchange interaction has a probabil-
ity p and 1-p of taking on the values J and 0, re-
spectively. As p is decreased the critical tem-
perature T,(p} decreases and reaches zero at the
percolation point p, . In this Letter we study the
properties of the phase transition at low temper-
atures and near p, . A sketch of the phase dia-
gram is given in Fig. 1. The two physical vari-
ables entering this problem are conveniently tak-
en to be xo-p, -p and se -e '8~. The scaling
fields p,2 and p, , are determined by the special
directions in the phase diagram in the renormal-
ization-group sense. These directions are tan-
gent to the critical line at p, and along the T =0'
axis, respectively. ' Along the T=0' axis, the
magnetic properties are determined by the prop-
erties of the connected spin clusters; i.e., it is
a percolation problem. ' Along the critical line
away from p, critical behavior appropriate for a
random system occurs. ' Near p, and at low tem-
peratures there is a competition between these
two effects. Stauffer' and others" have argued
that the point p =p„T= 0' should be viewed as a

f

multicritical point. This is discussed further be-
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FIG. 1. Phase diagram of a random Ising model. The
physical fields are ro-p -p and ~z-e 8". The scaling
fields p2-~ and p, l-ro+ax are determined by the spe-
cial directions.

low. A magnet with random occupation of the
sites, Rb,Mn~Mg, ~F„has recently been studied
experimentally near the percolation point by Bir-
geneau et al. '

In order to facilitate averaging over the quenched
random exchange interaction we consider n iden-
tical replicas of the Ising model. ' After averag-
ing over the exchange interaction, the partition
function for the n replicas is

n

Z(n) = Trg(1+vexp[P~ (y, „'p.„"-I)j) exp(hQ p '),

where v =P/(1 —p), h = pH, where H is the magnetic field, the Ising spin p„on site i for replica o
takes on the values +1, and the product is over all nearest-neighbor pairs. The required partition
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function is then given by

(lnZ) =limn 'lnZ(n).

We rewrite (1) in the form Z(n) = Tr&e . This is done by introducing projection operators

P,"=g —,'(1+ p, „'y, '}, P,"=Q—,'(1 —p„'p,„')g '-,'(1+ p 'p. '), etc.
CX CX

The Hamiltonian is then

-PH =+[A,P, "+A,P, '"+. . .AQ„"] +hQ
nil

where

A, =in[1/(1-p)], A, =ln(1+ve " ) =ve "

(2)

(3)

(4)

The correct low-temperature limit is obtained by letting n -0 after letting T-O, and thus at low tem-
peratures we only need retain 8, and A, . We are thus led to consider an Ising model in which at each
site we have n spins p. . It is convenient to regard this as a model in which each site can be in one of
2" states.

To discuss the disordered phase we introduce a complete set of functions appropriate for a disordered
system: p, „, p, p. t) (o. & p), p~p, sp. ), (o. & p&)), etc. We use a notation )u(„) for all these functions. The
index (o} takes on all the values o., oP, o.Py, etc. , arranged in increasing order Th.e Hamiltonian is
then given by' (omitting a constant)

PIf =E-[&,E~.'I "+ff& I 'u()'~ 'us' )+.h;Eu ', (5)
fin n&8

where 2"K,=in[1/(1-p)] +(n-2s)ve ' . In the mean-field theory of the transition, we introduce order
parameters m, =(p. ), m~= (p, „p8), etc. » In the disordered phase m, -h, m, -h' etc. , so that to order
h2 we only need consider m, and m, . Similarly along the critical line m, -(T, -T)'~', m, -(T,—T) etc. ,
so again we only need m, and m, . However, in the ordered phase near the T=0' axis, all the order
parameters are of the same magnitude and this approximation only gives qualitative results. Near p„
the mean-field equations are (for n = 0)

m, (ro+w) =h-m, m„m, (r~+2w) =m, '-2m, ',

where 2"r„=z(p,-p)/(1-p, ), 2"w=2zve '8~, and z is the number of nearest neighbors. In the disor-
dered phase m, =h/(ro+w}, m, =h (r, +w) '(r, +2w) '. The spontaneous magnetization" near the crit-
ical line is given by m„= ) r, + w)"'() r, +w)+w)'", The mean-field critical line is r, + w0 and this ex-
pression shows the crossover behavior: Choose variables p, , =r, + ww, and m»=

~ p, , ~(1+w/p, '~~}'"
with y=1. Near the critical line u»

~ p, ), m»-) p, , )'~' while along the sr=0 axis m»-—
) p, )= (ro). This

latter result is only qualitatively correct (the correct result is 2~ ro~ see below). Results equivalent to
these have been given by Ridaux, Carton, and Sarma' using a variational method.

To discuss the ordered phase we introduce functions appropriate for an ordered state:

Po'= II2(I+ P '}, P '= 2(1 —u '}rI'2(I+ PB') «c ~ (7)

We also use the notation p(„) for these functions where (n) can also take on the value 0. The Hamilton-
ian is (n =0)

-»=Z[A&p(. )'p(. )'+A,gg(p. (s)'p(()'+p(s)'p. (s)'}]-2hg[Ep. '+2X p.s'+. ..]. (8)
nn (&) & (&) 0'. 0(& 8

In the mean-field theory, we introduce order parameters x, =1-(p,), x, = 1 -(p„), etc. The equations
satisfied by these order parameters near p, are

x, =0, r~, +~zx,'+ —,'wx, =2h, r~, +~,' z +(w,sx, - x) =2sh. (9)

Along the w = 0 axis these equations separate and the spontaneous order x~ = 2( r, (. The magnetization
is also m»=2j r(. . If w & )r( we only need consider the first few of Eq. (9): x»=2~ r, ) -w, x~=2)r, )
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-~'/I r. l.
Critical exponents in 6-e dimensions can be calculated by writing the partition function as a Gauss-

ian integral. We introduce a variable s(„) conjugate to each 1)(„) in (5} and the effective Hamiltonian is

P&E= a&&Is(.).I'(r.(n)+&') a-&"'Esn~=. -6»-'" X ' &s( ). s(a). s(&)-.,-... (10}
{Ot) u ()(P)()'3 &

where N is the number of lattice sites and r,„=r»=r, -(~n-i)w, r, a=r»=r, -(m-2)w, etc. The
sum in the third term is over all ordered indices (o), (P), ()) such that each replica 1, 2, . . . , n either
appears twice (i.e. , once in each of two different indices) or not at all. The recursion relations" are
obtained by integrating over all fluctuations with wave vectors b &0 &1, rescaling all lengths by a fac-
tor of b ' and scaling s - rs, where g is chosen so that the k' term remains unchanged:

u' = ub(' ' ") '[1 + 2uu'(2" -3)lnb]

where ))= 3u'(2"-2) and u'=u'V/(2'm'N). Terms which vanish when b-~have been omitted in (12).
Equation (11) is exactly the same as that for the 2"-component Potts" model and the fixed point value
u '=e/(10-3&2"). We discuss Eq. (12) in some special cases. (a) For n= 1, our model is just the Is-
ing model and Eq. (12) reduces to one equation r»'= b'r», which leads to classical exponents as expect-
ed near d=6. (b) For general n&1, we have n-1 degenerate eigenvectors ro, +, -ro, =so with recursion
relation

w' = b'w, y = 2 -(e/3)(2" + 4)(1()—3 x 2")

and one nondegenerate eigenvector
n nR=g r„=(2"-1)r,+-,'nw,

t

(i3}

with recursion relation

g'=b"R, x =1/v=2+(5c/3)(2"-2)(10-3x2") ',

where v is the exponent for the correlation length. The crossover exponent

(p=x/y =1~(2"-1)e/(10-3x2") ', n pi.

(i4)

(15)

(e) For n =0, Q,(",)r«-=0 and r„'=b~'I"&)r„, where v~ is the correlation-length exponent for the percola-
tion problem" (v = 2+5m/84). There are n degenerate eigenveetors r„. We have shown that this de-
generacy remains to O(e') so that the crossover exponent for the random magnet is @=1+0(e').

The susceptibility in the disordered phase near p, can be written in the form suggested by Stauffer,
)( '=A p, ,~&f (au/p, ,'/y) where A is chosen so that f(0) = 1, ) ~= 1+-,' e is the percolation exponent. The
scaling fields p, , =~0+au, p.,=~ are chosen as in Fig. 1 so that a determines the slope of the critical
line at p, . The function f vanishes on the critical line with an exponent ). For n=0 and to order e, f
is given by

f(x) = 1--,' u*'+x(1-a) -u*'x 'P(-1) '[g„,(x) -g,(x) ],
s=l

(i6}

where g,(x) = [1+x(s -a)] 'in[1+x(s -a)]. As y= 1,
the critical line is p, =0 and we require that f
vanish on this line. This condition determines a
= I --'))'u*2$(3), where g is the Riemann zeta func-
tion. Then for large x, f(x) -x 4 ' and we obtain
mean-field behavior near the critical line as ex-
pected near six dimensions.

It is of interest to compare our results with a
heuristic picture (due to de Gennes") discussed
by Lubensky' and Stanley et al. ' In this picture

the connected spin clusters near p, are regarded
as a collection of nodes connected by links which
are approximated by self-avoiding random walks.
This picture predicts that v~ & y ' & v~/v, where
v~ is given above and v, is the correlation-length
exponent for the self-avoiding random walk. For
d~ 6, y '= v~/v, = 1, but for d=6 e, v~= 2-+5&/

v, = ~, and y '& v~/v, . It is unreasonable to
extrapolate our result to low dimensions. For
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this reason, we calculated y for our model using
Migdal's" method, which should be accurate near
one dimension, with the result y = I+0[(d-I)'].
This agrees with a result of Kirkpatrick" ob-
tained by Migdal's method without using the rep-
lication device. The experimental results' on a
Heisenberg magnet with sit randomness in two
dimensions give q '-1.7. This difference may
reflect the difference between Heisenberg and Is-
ing systems.

*Work supported in part by National Science Founda-
tion Grant No. DMR-75-18350.

We are grateful to Dr. D. B. Nelson for this remark„
any renormalization-group transformation will not
move the system initially at T =0' away from the T =0
axis.
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The leptonic correlations pointed out by Sachs can serve as tests of time-reversal in-
variance under reasonable assumptions in inclusive single-lepton production by neutrinos.
For dilepton production, the presence of strong hadronic final-state interactions does not
allow the corresponding conclusion.

This Comment is devoted to an examination of
the conditions under which the purely leptonic
correlations recently pointed out' by Sachs can
serve as tests of time-reversal invariance (hence-
forth called T invariance). I consider inclusive
lepton production by neutrinos v (taken to be of
the muon type); the corresponding arguments of
course apply for antineutrino projectiles. Under
"General considerations" I define the question:
the derivation, under T invariance, of the equal-
ity (1.3) between cross sections for configurations

which are related by a time reversal of the de-
tected leptonic variables; because of Eq. (1.3),
the correlations of Sachs would then indicate 7'

noninvariance. Then I derive (1.3) for single-
lepton production, and compare it with the deriva-
tion of Ref. (1). I then discuss dilepton produc-
tion, and in particular, the difficulty in deriving
(1.3) for this case in the Sachs model.

A particle symbol will denote also its various
characteristics (momentum, spin, charge, etc. );
the tilde over a particle symbol means the time
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