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obstacles inertially. The amount of plastic de-
formation in the latter process is determined by
the degree of underdamping. This kind of proc-
ess is supported by recent computer simulation
studies. "
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A

A new type of domain wall is found where both vectors d and l rotate from parallel to
antiparallel configuration in the same plane but in the opposite sense. The composite sol-
iton has the surface energy smaller by a factor of ~5than the pure d soliton in a uniform

& texture. The oscillations of the vector d in the composite soliton give rise to satellite
resonance frequencies, smaller than the normal magnetic resonance frequencies in the
A. phase.

In recent papers, "' it has been shown that the d texture in superfluid 'He-A may have a planar struc-
ture (or domain wall) which has many properties in common with the solitons in other fields of solid
state physics. ' These solitons (we call them magnetic solitons) can be created magnetically and have
unshifted resonance frequencies associated with sliding motions of solitons over a uniform l back-
ground. ~~ In fact, in all previous analyses, "' it was assumed either explicitly or implicitly that the
l field constitutes a uniform rigid arena over which the magnetic soliton moves around freely. This as-
sumption may be valid as long as we are concerned with a time scale much smaller than the character-
istic relaxation time"' of the vector l. However, after a lapse of time longer than this, it is very like-

A

ly that a composite soliton is formed where both d and l fields are involved, thus providing a natural
A A

trapping potential for the d soliton (unless, of course, the / field is fixed by external constraint). This
potential then has significant consequences on the magnetic resonance associated with the soliton.

In order to consider this general situation, we start with the following kinetic energy term of the
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free energy valid in the Ginzburg-Landau (GL) regime'.

where A&, (p, is the spin index; and i, orbital) are nine complex order parameters describing the con-
densate of superfluid 'He, and

1~ = f(S +)-9r(a,T,)-2P(3)/4~2,

(2)

(4)

where g and y are functions of position to be determined later The. vector order parameter consistent
with Eq. (4) is then given by

in the GL regime, with m* the effective mass and N the 'He density. In the A phase, where the con-
densate is the axial state (Anderson-Brinkman-Morel), the order parameter A„, is given as

A„, =d„g, '+i5, ')S,/v 2,
where d is a unit vector describing the spin coordinates, while 5', P, and l (=- 8'x 5') are mutually or-
thogonal unit vectors describing the orbital coordinates, We can then rewrite Eq. (1) in terms of d and
Z = g'+i5')~, /WZas~'

Et ~= Kf—d'r &31&' ~l'+ 1&xXI'+2&[(&'&)~*-&i&'~*)]+2I~'&dI'+I &I'8;dqB&dp].

In the following we will specialize to the configuration where a static magnetic field H is applied in
the z direction. Furthermore, we limit ourselves to the case that H is large enough so that d, in the
equilibrium configuration, lies in the x-y plane. Then we can take

d = sinPx+ cosgy and l = sinyx+ cosyy,

rh = (- cosy x + siny y + iz )4,e'~/W2.

Substituting (5) and (6) into (4), we have

E = 2A fdsr ((2 sinzy + 1)(By/Bx)'+ (2 cos'y + 1)(By/By)'+4 siny cosy(By/Bx)(By/By) + (By/Bz)'

+ 2[i VQ[
'+ (Bg/Bz)'+ (cosy Bq/Bx —siny 8(/By)'+ 4i Vei ' —2(sinyBe/Bx + cosy BC /By)'

+ 2(By/Bz)(siny84/Bx + cosy BC/By)- 6(sinyBy/Bx + cosysy/By)BC /Bz +Xo sin'(y —g)),

(5)

(6)

E/o(k) = 2A fds([l+2a' —2k3'a'(2 —a') '] y, '+4(1 —za')(, '+y, sin'(y —g) },
where g(k) is the area of the surface with normal vector k. We shall see later that y,') g, '. Therefore
the planar solution with minimum energy must correspond to the case k~'=k, '+k, '=0, and k, =+ 1. In-
troducing new variables u and v by u = y + 4g and v = y —g, we obtain

E/o(k) = 2A fds( ', (1 ——,'2a—'k, ')u, '+~4[1+a'(2 —~k, (2 —a') ')]v, '
+ ~a'[1 —~4 k, '(2 —a') '] v, u, +y, sin'v]. . (6)

For k~=0, and k, =+ 1, we have pure twist solutions

u = const and tan(u/2) = exp[(5A. ,)' 'z/2],

where A = 2KB,' and X, =y„&„/A. Here we have dropped pure divergence terms, which vanish identical-
ly in the present case. Furthermore, we have included the dipole energy term' [the last term in Eq.
(6)], which is given as E = ——,y„A„(l d), with y„ the spin susceptibility and 0„ is the longitudinal reso-
nance frequency. If we neglect the y variable from Eq. (6), we obtain the equation describing a pure
magnetic soliton (or d soliton) in the static limit considered previously. "' We shall look for a planar
solution of Eq. (6) of the form y =y(s), g =g(s), and C =4(s), with s =k, x+k, y+k, z =k ~ x and ski'=1.
Then C(s) is easily minimized to give C, =k,ay, /(2-a') with a=(k, siny+k, cosy), where suffixes s mean
the derivative in s. By substitution of this the free energy is reduced to

with the surface energy

f (l, d) =E/0, = 4(X,/5)"'A, (10)
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which is compared with the d soliton energy'

E
ii (d)/o = 2 (2A 0) A E~(d)/(x = 4(&o) A

where
~~

and& denote the orientation of the soliton plane to the vector l. Since the composite soliton is
thinner by a factor of (5) '~', the energy is reduced by the same factor as compared with a pure d twist
soliton. The pure twist soliton is shown in Fig. 1. We estimate the energy increase to a nonzero k~
perturbatively and find

F/v(k) = f (l, d)[1+~(l —g. cos Sw)k~'+O(k~')]=—f (l, d)(1+0.1804k~'),

with f (l, d) given by Eq. (10).
Therefore, once d solitons are created magnetically, it is very likely that they relax into the com-

posite soliton, unless the vector / is constrained to be uniform by some external perturbation. When
A

the composite soliton is formed, the d component cannot move freely, since the l texture provides the
A

trapping center for the vector d. This gives rise to nonvanishing frequency shifts in the magnetic res-
onance.

In order to study the resonance, let us consider small oscillations of the vector d around the equi-
librium configuration. We assume that d is now given by

d = [sin((+ f ) x + cos(g+ f )j](1-g')'~'+gz, (1S)

(12)

where f andg are assumed to be small. Within the quadratic approximation, the free energy associat-
ed with the fluctuations is given

6I'/g, = ~fdz(4(e f/&z)'+x, (1 —2 sech'[p(5A, ,)' 'z])f '

+4(sg/Bz) +g $1- ~ sech [—'(5A. )' 'z])g ). (14)

Both f andg modes have bound states with eigenvalues X, and X, with

y,/X, = —,'(465 —7), f (sech[—(5X,)"'z]}

y,/y, = ~, g ~ (sech[-', (5X,)"'z]]'". (15)

Here we have considered for simplicity the case with A. = p, = 0, v = 1. In Lagrangian formulation of the
spin dynan1ics,

L=T —V, (16)
and the above free energy 5I" provides the potential V, while T is given with the Euler angles describ-
ing the spin relation"

T =zgN Jd'r fa'+j' y+'+2nycosP —2(u, (a+ycosP)]. (17)

Here, a dot on top of a, P, and y denotes the
time derivative and w, =y,B is the Larmor fre-
quency associated with the static magnetic field.

Assuming that we start with the configuration
A

d =x with e =P =y = 0, and that we are studying a
small fluctuation around n = g(z ), P = 2m, andy = 0,
we can make the following identifications:

f =~ -0(z), y=g

Then the Lagrangian (16) describes the magnetic
resonance associated with the composite soliton.
It is easy to find that the composite soliton gives
rise to satellite resonance frequencies

(u,
' = ~~'(x,/x, )

(x,/y, )' =0.722, (x,/X )' ' =0.8944 (18)

for the longitudinal and the transverse satellites,
respectively.

About a year ago, the Saclay-Orsay group" re-

(o,' = (u, '+ &„'(x,/x, )

for the longitudinal and the transverse resonance,
respectively, and which are separated from the
main resonance peaks. Re note that in the GI.
regime, the satellite frequency shifts normalized
by Q~ are independent of temperature and we
have
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I( Z

FIG. 1. Pure twist solution is shown schematically.
The solid arrows indicate the direction of the vector l
while the arrows with the dashed line indicate the direc-
tion of the vector d.

ported observation of a satellite peak in their
longitudinal resonance experiment with the fre-
quency shift 0„,/Q~ —1/v 2. More recently, an
extensive study of satellites in both transverse
and longitudinal magnetic resonance experiments
has been carried out by Gould and I ee." In our
notation, their experimental results may be sum-
marized as

(x,/x, )"'=—0.'l4 —0.35(l T/T, ), -
(X,/x, )"' —= 0.835.

Although their satellite frequency for the trans-
verse resonance is somewhat different from ours,
the longitudinal resonance satellite appears in
good agreement with the predicted value, if one
ignores the small temperature-dependent terms.
Furthermore, the temperature dependence can
be at least qualitatively understood, if we include
the temperature dependence of the Fermi-liquid
correction as discussed by Cross' in our free en-
ergy.

Moreover, the fact that satellite appears only
in relatively open systems (which guarantees the
free rotation of the vector l), its relative perman-
ence, as well as the procedure required to pro-
duce the satellite, appear to indicate the possi-

bility that at least the longitudinal satellite is as-
sociated with the composite soliton discussed
here. In this respect, the experiment by Gould
and Lee" appears to be the first experiment
where the existence of solitons in superfluid 'He
is established. As to the transverse resonance
satellite, we note that the geometrical condition
is quite different from the longitudinal experi-
ment. They turn the static magnetic field rather
than the radio-frequency field and therefore the
accompanied texture could be quite different.
Furthermore, absence of any temperature depen-
dence in the observed shift normalized by ~„ is
rather strange, if we assume the transverse sat-
ellite arises from the composite soliton discussed
here. We believe that if their experiment is re-
peated but with the static field fixed the compos-
ite soliton will produce a satellite predicted in
Eq. (18).
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to publication.
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