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Theory of Turbulence in Superfluid 4He
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A consideration of the dynamics of a vortex tangle leads to a new equation describing
turbulence in superfluid helium. The equation is seen to be remarkably successful in pre-
dicting the steady-state properties of dissipative counterflow.

At sufficiently small velocities, superfluid he-
lium will flow through a channel without any mea-
surable dissipation. Above certain critical veloc-
ities, however, dissipative behavior sets in as
small amounts of quantized vortex line grow by
interacting nonconservatively with the normal
Quid and with the walls of the channel. Although
interest has centered primarily on the critical
velocities themselves, numerous experiments
have also been performed to study the turbulent
state generated when the superfluid is driven far
into the dissipative regime. ' '

It was suggested by Vinen in his admirable pa-
pers on the subject that steady-state superfluid
turbulence will consist of a random tangle of quan-
tized vortex lines maintained in equilibrium by
competing growth and annihilation processes. He
proposed an equation governing the total line
length 1. per unit volume in the presence of coun-
terf lowing normal and superfluid velocity fields
U„and U, . Although this equation has proved ex-
tremely useful, it is essentially phenomenologi-
cal in character. That is, the theoretical argu-
ments which were used to derive the Vinen equa-
tion were based on a number of erroneous prem-
ises, the most important of which was that the
important characteristic velocity acting on the
vortex tangle is the random interline velocity.

Our purpose here is to present a new theory of
superfluid turbulence, obtained by considering
the actual dynamics of a vortex tangle. The pre-
dictions of the theory are compared with the de-
termination by Vinen' of L as a function of U„- U,
and T, and the recent measurements by Ashton
and Northby' of the average drift velocity of the
vortex tangle. Additional calculations, as well
as details of the derivation and of the numerical
integration technique, will be given in later pa-
pers.

The vortex tangle must be treated in some ap-
proximate statistical fashion. If we describe the
vortex line by the parametric form r(s, t), the
local self-induced velocity Br(s, t)/Bt measured
with respect to U, is given by'

v, = —(n/4m)r' xr" [in(ar") +0 (1)], (1)

where primes denote differentiation with respect
to the arc length s, r" =

l
r" I, It is the quantum of

circulation, a is the core cutoff parameter, and
O(1) represents nonlocal corrections of order 1.
Since the behavior of a local line element is de-
termined primarily by this velocity, we charac-
terize the vortex tangle in terms of a distribution
in v„or, equivalently, a distribution in v, /u, and
the local radius of curvature R = (r") '. Although
it seems to be a reasonable simplification to con-
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fn (2) and (2), P = (a/4m ) ln(R/a) and n =Bp„/2 p,
where B is a friction parameter that has been de-
termined from independent experiments on rotat-
ing helium.

Although the local self-induced velocity given
by Eq. (1) will not in itself affect a homogeneous
distribution, v, itself will change in time due to
the action of the higher order derivatives r",
r", . . . . Repeated differentiation of Eq. (l) with
respect to s yields a series of coupled equations'

Br'/Bt =Pr' Xr",

Br"/Bt = pr" xr"'+pr'X

Br"'/Bt =2pr" xr"+pr'xr'
(4)

and so on. Differentiation of Eq. (i) with respect
to time then gives

Bv /Bt = pv xr" + p2r' x(r' xr' ).
Thus vy changes because of r"' and r", and these
themselves are changing due to the action of still
higher-order derivatives. To truncate this infi-
nite coupled chain, we make the following statis-

sider the distribution to be spatially homogene-
ous. ' it will certainly depend on the angle 8 be-
tween v, and the axis of the counterflow (taken to
be positive in the direction defined by U„). As
the simplest physically interesting case we there-
fore consider the distribution function A. (R, O, t),
where A(R, O, t)2''sin0dR d0 is the line length
per unit volume with local radius of curvature in
the rangeR to R+dA, and v, heading into the
range 0 to 0+dan.

The vortex tangle will develop in time as each
line element moves under the combined effects of
normal fluid scattering, local self-induced mo-
tion, and the velocity fields arising from other
line elements in its neighborhood. linen' and
other authors have already shown that the noncon-
servative action of the normal fluid on a line ele-
ment dl gives rise to the rates of change

R = a[(U„—U,) cos8 —P/R],

B = —o.(U„-U,) sino/R,

dt/dt =R/R.

This leads by a straightforward analysis to

~ P BX
A.„,=o. ——(U„—U,) cos0

Bg

tical assumptions: (a) the distributions of r",
r", . . . do not have any significant directional
preferences, and (b) as one moves along the line,
r",r"', r", . . . become randomized in a character-
istic distance 5 equal to the interline distance
I v . Assumption (b) may be viewed as an as-
sumption of maximum smoothness, since the ran-
dom interline velocity fields will certainly pro-
duce randomization over a distance 6. Although

(b) in no way restricts the scale of r", it imme-
diately implies the order-of-magnitude relations

~"/&, r"-~"/5' etc , where ~"=(R ') is
the average curvature in the vortex tangle. In ad-
dition, it is obvious from Eqs. (4) that the charac-
teristic time over which r",r"', r", . . . mill ran-
domize is 7 - 5/v„as one might expect. The
quantities 6, i", and v, must of course be deter-
mined self-consistently from the equation of mo-
tion.

Et now follows from Eq. (5) that the third deriva-
tive term gives rise to a random walk in the di-
rection of v, with a typical angular displacement
of order P(F"/5)(5/V, )=l in a characteristic time

This leads directly to an angular diffusion con-
tribution

~ v 8 A, BA,
+ ctn0—3 4Q B02 B0 (6)

The fourth derivative term gives rise to steps
6 r"- p(F" /5')(6 /v, )a=a /5, where a is a random
vector of order 1. This has two distinct conse-
quences. Most importantly, one notes that x„,„"
= Ir" + /a& I- (r"'+ & ')"' when averaged over a
implies a monotonie increase in curvature. We
will show later that7"-6 ', so that this effect
can be represented approximately by R = —v, R'/

It reflects nothing more than the fact that
large random changes in the vector curvature are
much more likely to kink up a straight line than
to straighten out a highly curved line. The con-
tribution made by this kinking term is

R + 4RA. (7)

The random steps in r" also imply that the distri-
bution will relax diffusively in R-0 space over a
characteristic distance R'/(R+ 5) in the character-
istic time v. From the standard formula (Ax')
= 6D7. , one then estimates a crude diffusion con-
tribution

2 82K. BA 82k. BA.R', + 2R +, +ctn6 —. (8)
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FIG. 1. Typical equilibrium distribution. Curves are
drawn for various values of cosI9. Note strong peaking
in U„(cos8 =1) direction.
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FIG. 2. Curve a shows straight-line fit to calculated
values ofl. ', plotted in units of 1000 cm . Curve b

shows straight-line fit to calculated values of v„, plot-
ted in units of cm sec '. Error bars represent numer-
ical uncertainties arising from coarseness of the R-0
grid used in the calculations.

The preceding argument clearly has many heur-
istic features. Nevertheless, it appears that the

equation

BX/Bt =X„+X3+X~q+Aqq

which contains no adjustable parameters, pro-
vides a satisfactory rudimentary description of
the vortex tangle dynamics in counterflow. Other

FIG. 3. Curve a gives calculated values of A(T) in
units of 1000 cm sec; the dots are the data of Ref.
1. Curve b gives calculated values of B(T); the trian-
gles are the data of Ref. 5. It is not clear how accurate
the data are, but all uncertainties are at least 5%.

contributions to BA./Bt are found to be small. In
particular, the random interline velocity v„- z/
2mb gives rise to random steps in r" of order (~/
2w5')v. . This leads to terms identical in form to
X&„and A.4~, but with v, replaced by v„. Calcula;
tions, however, always give the result that v,
)&5 showing that 5 j and not v „is the dominant
characters ti c velocity. In further contradiction
to previous assertions, line-line crossing events
do not appear to represent a major decay mecha-
nism. On the other hand, the annihilation mecha-
nisms X„X4~, and X~,„have not been considered
in earlier work.

Because Eq. (9) is quite complicated, it is a
nontrivial exercise in numerical analysis to study
its properties. So far we have found that a for-
ward integration in time, starting from an arbi-
trary distribution, leads inevitably to the same
steady-state distribution, depending onl.y on U„
—U, and T. As the example in Fig. 1 shows,
these distributions are highly anisotropic and are
strongly peaked at R ~5, in agreement with the
conclusion drawn by Ashton and Northby, ' and con-
sistent with the assumptions we have made in de-
riving our theory. Figure 2 shows the calculated
variation with U„—U, of I.' ' and of the mean vor-
tex tangle drift velocity v„. Vinen' found experi-
mentally that I '~2=A(T)(l U„—U, l

—vo), where vo- 1 em sec ', and Ashton and Northby' observed
that v„=B(T)(U„—U,). The predictions of the
theory are seen to be in excellent agreement with
both sets of observations, including even the pres-
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ence of the small parameter v, . Perhaps even
more surprising is the numerical agreement"
between the predicted and the observed values of
A(T) and B(T), seen in Fig. 3. One may conclude
that Eq. (9), which is very different in spirit from
previous work on the subject, is remarkably suc-
cessful in predicting the steady-state properties
of superfluid turbulence. Further studies of this
equation, in relation to such topics as critical
velocities and transient effects, are currently
under way.
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Some of the experiments described in Refs. 1-5
show effects that appear to arise from nonhomogeneous
behavior. Such effects are not considered in this paper.

See, for example, R. J. Donnelly, Egpe~imentaE Su-
perfluidity (Univ. of Chicago Press, Chicago, Ill. ,
1967), p. 130.

'The nonlocal terms O(1) are neglected, and p is
treated as a constant. These approximations involve
errors of order 10%.

' Both the experimental and theoretical points above
2'K have been calculated assuming J3 =0.85. There is
considerable uncertainty about how to interpret the da-
ta which determine L at these temperatures, so that
deviations seen there are not necessarily real.
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Strong experimental evidence is obtained that the maximum observed in the tempera-
ture dependence of the flow stress of copper alloys is a dislocation inertial effect. By
using the superconducting effect in lead as a key, it is found that the maximum occurs
when dislocations become critically damped.

A maximum in the temperature dependence of
the flow stress is found in copper alloyed with
zinc, ' silver, "' nickel, + ' germanium, ' aluminum, '
and silicon. ' A similar effect is also found in
lead, ' silver, "' and gold. ' This result is unex-
pected on the basis of existing theories of flow
stress, ' based on a quasistatic-rate-theory proc-
ess, which predict a monotonically decreasing
flow stress with temperature. It was already sug-
gested by Suzuki and Ishii, ' and by Kamada and

Yoshizawa, ' that the effect may arise from a dy-
namic overshooting of barriers opposing disloca-
tion motion. Independently, from an analysis of
the temperature dependence of flow-stress mea-
surements in superconductors, Granato' predict-
ed the existence of such a maximum. We give
here strong experimental evidence that at low
temperatures the flow stress of both supercon-
ductors and normal metals is determined by the
dynamic behavior of dislocations. This is done
by using internal friction measurements instead
of macroscopic flow stress measurements and by

comparing results for copper and lead with two
diff erent impurity concentrations.

The strain rate of a crystal which contains a
density A of dislocations of Burgers vector 5,
moving at the average velocity v is

e =Abv.

In the traditional theories of plasticity' it is
supposed that the rate-limiting step is provided
by the overcoming of the obstacles by thermal
fluctuations. It is implicitly assumed that the
process is a quasistatic one in which the disloca-
tions do not overshoot the barriers by reason of
their inertia. The average dislocation velocity is
then given by

n = d v expf -H (o)/hT],

where d is the average displacement per thermal-
ly activated event, v is an effective attack fre-
quency, "H(o) is the free enthalpy of activation
required to overcome the obstacle, 0 is the ap-
plied stress, and ~T has its usual meaning.
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