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Simple, natural models of leptons are presented in which the rare decays p— ey and
p— 3e occur. The models require doubly charged leptons. The experimental lower lim-
it on the mass of doubly charged leptons determines an upper limit on I'(u— 3e)/ (k= e

Parity nonconservation in atoms may be small.

The availability of high-intensity meson beams
may soon lead to an improvement of the upper
limit! of ~2x107® set on the branching ratio of
the famous? decay p —ey. The first point to re-
alize is that a value for the branching ratio of
order ~107° might actually be quite reasonable
in the context of modern gauge theories of the
weak interaction, Indeed, a theory which leads
to a branching ratio of order of ~107° has already
been constructed by Cheng and Li.* They propose
that the electron and muon couple to neutral “hep-
tons*” N and N’ through right-handed currents,

In the standard notation for SU(2)® U(1) gauge
theories, their proposal is

() (o) e () () 0

where N ,=Ncos¢ +N’sing, N J/=-N sing
+N'cosg, with ¢ a mixing angle, The decay u

- ey proceeds through the graph in Figs, 1(a),
1(b), and 1(c); the expected branching ratio is
readily seen to be of order (a/m) (sing Am?/M ?)?
where the factor Am?=m % -my'? is a consequence
of the Glashow-Ilioupoulos-Maiani (GIM) mech-
anism.® The rather reasonable value of sing Am?
~1 GeV? then gives the branching ratio roughly
as quoted above, One feature of this theory, as
noted already by Cheng and Li, is that, in gener-
al, one would expect that the objects coupling to
e” and p~ via left-handed currents would not be
purely the massless neutrinos v, and v, but
some mixture of these with the massive N and
N’,

In order to avoid disagreement with experiment
(large violations of muon-number conservation),
such mixing must be exceedingly small. In the
present state of the art, the e and u acquire
mass in this theory by a bare-mass term and by
couplings to Higgs triplets and singlets, whose
neutral members acquire vacuum expectation
values, The couplings which are required to
give e and . masses inevitably lead to V N
couplings. These couplings must then be rotated

away leading to currents of the typical form
Npy pere

These considerations suggest that if pu~ —e”y
indeed occurs at the rate mentioned above it
might be desirable to have a theory which com-
bines the simplicity and order-of-magnitude val-
ue of the Cheng-Li theory but which does not mix
neutrinos with neutral heptons., We have con-
structed two such theories, which will be re-
ferred to as the doublet and the triplet theory.

Let us discuss the triplet theory first (the doub-
let theory will be briefly described later): Its
SU(2) ® U(1) multiplet content is

v, v,
<e>’ <#>7 €r, Ui, Mg, Rg.
n

¢'L k¢L

Here 2~ and k™ are two doubly charged heptons
and ¢ is a mixing angle, We now proceed to list
some features of this theory:

Naturalness.—The theory is natu~ .1 since the
most general mixing (one angle) has been adopted.
It is easy to read off the minimal Higgs structure
required to generate masses in each theory.®
Two Higgs triplets with hypercharges |Y|=0, 1
are required. Many scalars, some doubly
charged, survive as physical particles.

U —ey and |-~ 3e.—The two doubly charged hep-
tons allow the decay u—ey to proceed through the
graphs” in Figs. 1(d) and 1(e) in addition to the
graphs of Figs. 1(a)-1(c). The contributions from
physical Higgs exchanges are generally small if
the Higgs particles are sufficiently heavy, As
remarked above Figs. 1(a)-1(c) lead to a branch-
ing ratio ~107° for u—ey.

At first sight it seems that the graphs of Figs.
1(d) and 1(e) will be much larger, since only one
W-boson propagator occurs, However, the GIM
cancellation between the graphs with a virtual &
or k2 exchanged insures that the contribution is of
the same order up to a logarithmic factor,

The result of a detailed computation leads to
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the branching ratio (R)
R(p—ey) =L (a/n)|[cosy sing am?/M?]2,

We neglect terms down by factors me/mp, mp/
My, ANA M, /My

We next turn to p—3e. Consider the matrix
element of the electromagnetic current

(e|J 0] w)
=F (4976 +F (49 0480°m , + F (4 0
with

F\(q%) =q*F,(q®) /m .

Clearly, only the transition magnetic moment
F,(0) contributes to the decay p—ey. In con-
trast, the transition charge radius F,’(0) also
contributes to y—~3e. Let us estimate the con-
tribution of Fig. 1(d) to the charge radius as fol-
lows. Contract the W propagator in the limit of
large My. After a Fierz transformation, the re-
sulting graph is seen to be just the standard vac-
uum polarization graph in QED. Thus, we obtain
a contribution to F,’(0) of order eG lnm,?/m 2
This is to be compared with the contribution of
the graphs in Fig, (1) to F,(0) of order eG(m,?
-m,?)/My?® In other words, the GIM suppression
factor in this case is logarithmic rather than dif-
ferential, This striking fact is a consequence of
the infrared character of the graph,” Thus, lep-
ton models which allow the graphs in Figs. 1(d)
and 1(e), such as ours, apparently give a larger
rate® for u — 3¢ decay than models which do not,
such as the Cheng-Li model. Keeping the domi-
nant contribution from Fig. 1(d), we obtain the
branching ratio

R(u— 30 =3(a/mM?cos¢ sing In(m ,2/m 2|2 (2)

Our theory determines the two branching ratios
R(p—~ey) and R(u -~ 3e) in terms of three param-

(a) (b) (c)

% 1

(d) (e)

FIG. 1. Graphs contributing to p—evy. The unphysi-
cal Higgs field is denoted by s. In the Cheng-Li theory,
the graphs in (d) and (e) are absent.
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eters, namely the mixing angle ¢ and the masses
of the heptons. The question is whether reason-
able values of these parameters would allow the
theory to be consistent with experiment. If ¢ is
not to be unattractively small (say = 0,1) then
Am?=m,? -m,? would have to be smaller than m?
=3(m,?+m,? in order to accommodate the exper-
imental upper limit® of ~6x107° on R(u — 3e).
For ease of analysis let us take Am?/m? to be
small compared to unity., Then the ratio of the
two decay rates become independent of Am?/m?
and ¢ so that

R(p—3e)/R(p—ey)=2&(a/m)(M/m)*, (3)

Electron-positron annihilation experiments cer-
tainly give a lower bound of ~4 GeV on m, This
then leads to an upper bound

R(p—3e)/R(p—~ey) =15

if we take (for the sake of definiteness) My, to be
~60 GeV. Saturating present limits of R (u —~ 3e)
of ~6x107% and of R(u —~ey) of ~2%x10™® we obtain
m~11 GeV. Just to see if reasonable values for
@ and Am are viable, let us take M~ 60 GeV and
m~11 GeV. In that case R(u—=ey)~1.6Xx10""(pAm)?
GeV'2andR(u— 3¢)~10""(@Am)? GeV~ 2. As an
example, if R(ux ~3e)~6X107° and ¢~ £, then Am
~1.3 GeV. Detailed and more general analysis
without the approximation Am /m <« 1 will not be
presented here. The reader is invited to make
his own.

Atomic physics —In contrast to the Weinberg-
Salam model, the neutral current coupling to the
electron and the muon is purely vector. Thus the
predicted value of the asymmetry to be observed
in atomic parity-nonconsevation experiments is
much smaller than in the standard theory (a non-
null effect could still arise from interference
with an hadronic axial current).

A boost to R—The most spectacular prediction
of the theorires presented here (aside from the
nonconservation of muon number!) is the exis-
tence of doubly charged heptons. Needless to
say, these heptons would show up in a spactacu-
lar way in e*e” annihilation experiments. Once
they were produced, their decays would enable
us to check many of the details of the weak cur-
rents we propose. The doubly charged heptons
could also be produced (weakly) ine”p and p™p
deep inelastic scattering, leading to spectacular
final states with u"y", e“e”, or u"e” plus had-
rons. There are also rare processes, to be sure,
such as K; —ep and K*~7n*epu. The expected rate
for these decays will be of the same order as
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that given in Ref. 3. One could also look for
wu ptut, wte utut, ete., in hadronic collision
from decays of a pair of heptons. The expected
weak contribution to muon (g - 2) is of order (1/
%) Gm 2 <107°,

Universality— Universality requires that left-
handed quarks should also fall into weak SU(2)
triplets, leading to new quark flavors with charg-
es +2 or — 4. Those who would rather maintain
universality with left-handed quarks in doublets
may prefer the following variation of our theory:

o (e G ()
<e >L’ <“ L’ hq, R’ k(p R’ h’L’ kL'

This doublet theory shares many of the features
of the triplet theory listed above with one signifi-
cant exception: The axial part of the neutral cur-
rent coupling to electrons and muons is twice as
large as in the Weinberg-Salam model and thus in
this theory one expects approximately twice as
much parity nonconservation in atoms.

Let us put our theories in perspective and sum-
marize. If the decay u~ —e”y is confirmed, of
course, some hitherto unknown interaction is in-
volved. We can, however, build theories in which
this new interaction is of a familiar type—simply
a new weak current. This would put nonconserva-
tion of muon number on a similar footing to, say,
nonconservation of strangeness, charm, strong
I, and so forth. Our theories are relatively
tightly constrained. The lower bound on doubly
charged hepton mass from e*e” experiments plac-
es an upper bound on I'(u = 3¢)/T' (1 ~ey). With
reasonable values of the parameters, we obtain
values for these decay rates close to the present
experimental upper limit. One theory also pre-
dicts that atomic parity nonconservation is much
smaller'® than predicted by the Weinberg-Salam
model. Thus, measurements of rare muon de-
cays, of atomic parity nonconservation, and of
e®e” annihilation could do much to clarify the
spectrum of leptons. If, on the other hand, the
limit on p = 3e could be substantially lowered,
the theories we propose here would require mass
ratios for the leptons very close to unity or very
small mixing angles, and might appear less at-

tractive.

The forward-backward asymmetry in p*—~e*y
with a polarized p would tell us the helicity of the
outgoing e* and could also distinguish between dif-
ferent models.™
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