
VOLUME 38 7 MARCH 1977 NUMBER 10

Renormalizability Properties of Supergravity~

S. Deser, J. H. Kay, f and K. S. Stelle
DePartment of Physics, Brandeis University, Waltham, Massachusetts 02I54

(Received 27 December j.976)

The possible local counterterms in supergravity are investigated to all loop orders.
Supersymmetry implies that {j.) supergravity-matter coupling is one-loop nonrenormaliz-
able, with a specific counterterm; (2) pure supergravity is renormalizable at both one
and two loops; (8) it fails at three loops; (4) extended supergravity models may avoid the
three-loop catastrophe, and have no dangerous local counterterms to any order. In that
case, the nonleading divergences could be removed by field redefinitions, which would
establish renormalizability for these systems.

One of the chief motivations in the construction
of supergravity" was the hope that this theory,
in contrast to ordinary Einstein gravity, ' would
prove renormalizable. The gravity-spin-2 sys-
tem should be better behaved by virtue of the ad-
ditional constraints imposed by local supersym-
metry on the possible counterterms. (The exist-
ence of Gauss-Bonnet-like identities, which will
be given below, in the spinor sector of super-
gravity was an early' indication of this possibil-
ity. )

%e shall show here that this hope becomes
progressively better founded as one ranges over
different versions of supergravity. Pure super-
gravity is better behaved than pure gravity. The
latter is only one one-loop renormalizable, while
the former is completely good through two loops.
However, from the three-loop level onward,
there appear possible superinvariant local coun-
terterms which do not vanish on the mass shell.
These terms are formally related to those, which
we shall also exhibit, already occurring at the
one-loop level for supergravity coupled to matter
multiplets such as (1, 2), but may, in turn, be
avoidable in extended supergravity models' through
their additional internal symmetries.

Throughout, we assume that any meaningful
regularization procedure always preserves, with-

out anomaly, gauge invariance of the second kind,
so that our analysis of supersymmetry invariants
is effectively that of all possible counterterms.
Before proceeding, we summarize what is al-
ready known concerning renormalizability. Ex-
plicit calculation has established that supergrav-
ity coupled to the (1, —,') multiplet is one-loop non-
renormalizable in the four-photon sector. ' By
contrast, in pure super gravity, at both one-loop'
and two-loop' levels, and in O(2) extended super-
gravity at one-loop, ' there are no problems on
shell through four-particle amplitudes. These
results were obtained by S-matrix arguments in-
volving helicity conservation in presence of glob-
al supersymmetry.

station and basic l enemas. —The supergravity
action has the first-order form'

,' J(d'x)[(R—(e,cu) +i y„y,y, *f"'],
*f""=5&"'"'fns f-s= Dks-Dso-,
Dn-=Sa 2~ p.n&" -(Dn Dsl= -s&aS'o

The field equations defining the common mass
shell can be written in various useful ways. For
the spinor field, they have the formally duality'-
iiivariant structure
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hf~, = -R~ p on, Rpvn8 + pufas~

where o. is the (anticommuting) transformation
parameter. We shall use the obvious but invalu-
able fact that since supergravity is supersym-
metric, its field equations transform covariantly
into each other, so that variations of quantities
which vanish on shell also vanish there. We shall
exploit this fact to do all of our work on shell
(where everything simplifies enormously) since
we are only interested in possible nonvanishing
on-shell invariants. Although those parts of an
invariant which vanish on shell do so by virtue of
the full nonlinear field equations, any surviving
terms must achieve invariance on shell by start-
ing again from linearized supersymmetry and
building up. In this process, the field equations
may now, of course, be used, but to lowest order
only their linearized parts are relevant. As ex-
plained below, this means that it will be sufficient
to consider only leading terms which are mani-
festly invariant under the transformation 6y&
= 28&n, and so involve only f„„rather than p„,
and correspondingly for curvature versus affinity.

Finally, we note the "super, " Gauss-Bonnet
theorem which extends the usual relation I, =I,
+I„where

I, =- fRp p~s', I, = )(4Rq, -2R'), I, = JR', (4)

to the global symmetry partners

K, =-2iJf ~~&'f„8, K, = 4i Jf "'y, py~fs„,

K, = -4i Jf ~ oPv .f,
according to K, =K, +K3 at lowest order, Note
also that the above relations are unaltered for the
parts quadratic in the fields, if arbitrary powers

The fa.ct that f may be replaced by -y, *f on shell
[like D&, It. —= (y„8, -y, 8„)A. = —,'y, e&, "SD„HA. for spin
—,'] is very useful, as are the free-field relations
8&f"' = 8„*f"' = fIf" ' = 0. The stress tensor 7""(y)
is traceless on shell, so that also A=0. For the
free field, the following relations hold on shell:
For any bilinear form, f&„yq8~")f 8= —j syq8i )f&,
+X, where X involves at least one contraction be-
tween f and f indices. It follows further that any
fy8~ ~f terms are ultimately reducible to contra, ct-
ed ones, which have the property that fq„y„8~ )f„
is symmetric in ( p a v).

Since our arguments will also make use of the
global supersymmetry of the free (2, —', ) multiplet,
we record the corresponding (weak-field) trans-
formations on (free) shell:

6&8 ~ g= —lot@'pf t, Gap = —(8 p' o'cl,

of the O'Alembertian are inserted between the
factor s in I, and K,.

One looP.—The Gauss-Bonnet results tell us
that there are just two globally symmetric arrays
of scale dimension four, namely I, +K, and I3+K3.
The Noether prescription augments these with
terms of the form fyyR, yyg8R. We merely state
the result: They build up the original I,. +K,. into
their full on-shell form, e.g. , -f ~ y@y f+[R&,
-T&,(P)]'+f ~ yyR&, through g' terms. Note that
since we are interested in the values of all in-
variants rather than their variational properties,
it is gratifying that the torsion contributions
build up correctly, and our terms are all bilin-
ear in 8I/5e&, and 6I/8p&. Ra.ther than attempt
this lengthy procedure to the bitter (g') end, we
now present the general argument which shows
that there are no other invariants on shell. Any
surviving terms beyond those needed to complete
the above on-shell (vanishing) arrays would them-
selves have to be, in their lowest-order parts,
invariant on shell under global supersymmetry
and the separate spin-2 and -2 Abelian gauges.
But the purely gravitational terms are already
included in our two arrays, as are the quadratic
purely fermionic terms (since the K,. are the only
independent ones). As for three-point terms, we
emphasize that since the two-point starting ex-
pressions all vanish as bilinears in the field
equations, the three-point terms generated via
Noether coupling automatically vanish on shell,
It is only in such three-point terms that one could
conceivably have an Abelian invariance which was
not manifest, but required use of the linearized
field equations. Such terms would necessarily be
of the form fJ y, with J" a conserved current of
the linearized theory and thus a bilinear struc-
ture (compare JI A &A in Yang-Mills theory).
All other three-point terms would have to be man-
ifestly Abelian invariant, but there are insuffi-
cient derivatives to ensure this. Similarly, the
four- and higher-point terms, schematically

y', would have to be manifestly Abel-
ian and global invariant, and again there are too
few derivatives. Therefore the one-loop diver-
gences (which are, of course, entirely of leading
local type) all vanish on shell for arbitrary num-
bers of particles.

Tzuo loops. —C)ur basic starting point here is
the same set of two arrays which begin quadratic-
ally in gravitons, namely I, +K; with a D'Alem-
bertian insertion. All other initially quadratic in-
variants fR. .. .DDR. .. . reduce to these plus terms
- fR 'As i.n..o. n. e loop, the Noether coupling
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ft"'5t„„=ift" "ny„8j „, 6c „=iuy,j„,
I 1 g V

&y „=t»y n +y, p™c&a -—,*D»c a,
(6)

Thus, on shell, the quantity

a, I= J [t„,' +ij "pg„,'c "ac-„—] (7)

is globally invariant. For supergravity itself, it
is excluded because the components [e.g. , the
Einstein pseudotensor or T&„(g)] lack local Lo-
re ntz and Abe lian y invarianc e, but it is permit-
ted for the (I, —,') system. Since the (2, -', ) and (I,
2) are globally independent, (7) is perfectly al-

produces three -point terms which vanish on shell,
There are now, however, sufficient derivatives
to construct three -point Abel ian invariants like
R.... , Rfy&f. While not part of the Noether coup-
ling, such terms could in principle be needed to
restore global supersymmetry to this order.
However, when we go on shell, the surviving
parts of these terms would have to be invariant,
But the R....' term has a variation which r equir es
a companion of the form R"' (f" „yu& sfq, ),
while, as we have seen, the fy Sf is (on shell)
necessarily symmetric in p, a v, so that it annihil-
ates the R &, ~ by index symmetries, and either
partner with contracted indices vanishes on shell.
Finally, there can be no terms -(ff)(ff) because
they have no possible coordinate -invariant part-
ners, purely by derivative power counting. To
summarize, there are no nonvani, shing on- shell
two -1oop invariants because no appropriate terms,
aside from the vanishing ar rays, can be con-
structed as global starting points.

Gravity supermatter. —We indicate here how
our methods imply that the coupled supergravity-
matter (I, —,') multiplet' is one-loop divergent;
this is actually a fore shadowing of the three- loop
problems below. At the global level, any multi-
p let obeys" the following on- shell transf or ma-
tions (up to divergences) of its total stress t»,
supercurrent j „, and axial current c „(with our
conventions):

lowed as a starting point" despite the absence (on
shell) of a (2, -', ) partner. Indeed, one can show,
using also Maxwell duality invarianc e, ' that this
counterterm determines al 1 the possible one - loop
divergences; these include in particular the four-
photon amplitude - (T„, )' from the Maxwell
stress tensor which has been found by explicit
calcu lati on. ' This problem is clearly traceable
to having tw o separate groups, and we shall see
how it is avoidable in extended supergravity, i.e.,
why (7) is forbidden there even for the lower spin
parts of an O(N), also in agreement with the O(2)
calculations. '

n-loop supergravity. The—generic local n-loop
counter terms may again be treated by separating
the on- shell vanishing arrays from higher par-
tic le terms. We only wish to indicate here the
basic requirement for nonvani shing n - loop invar-
iants to exist by considering, say, R""terms.
Their variations are of the form [Z(R")]&,u s
x nD"'f" . Their partners would have to have
the form R" 'f y&f But .variation of the latter
would always yield extra terms involving 8(R" ')
XRo'yf, which would have to vanish separately
because they could not be cancelled by any other
covariant term (explicit affinities would be re-
quired). (Identically conserved quantities run
into other difficulties. ) Further, terms like R"&'

cannot work either, because one could iteratively
reduce these to terms with similar difficulties.
Likewise, any higher R (jf)" terms would even-
tua 1ly couple to the above types. Thus it would
appear that renormalizability hinges on the ab-
sence of conserved geometrical tensor s at least
quadratic in curvature. Unfortunately, these do
exist, as we now discuss, and first affect three
loops.

Three -loop supergravity. —The Be1-Robinson
tensor" is defined by

T~„us [R u ~R ps' p+ R u p Rysp p] (8)

it is totally symmetric, traceless, and conserved
on shell. We now assert that the following quan-
tity is on- shell invariant, but no nvanis hing:

= f{&[p Uus+ Hpv us]+i~" &~gus aC" ~gus]~
where

H»us = -(i~2)f u(y&s. +y, s„)fs~, ~»s=R u' oy„f~s, C„„s= -(i/2)f '
y,y„f».

This is because essentially the same rules hold for these objects as for the t' multiplet of (6).

f(T +H) ~ '"s6(T +H) „...= i f(T +H) ~"st y„@,„s,
5C

& s = ice y5/„us, 6 Z„us = ([T+H] ~ sy')n + (y, gC q„s)o.'-(2*DE,C „s")o.'.
(IO)
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Of course, we do not know whether (9) is part of
a locally supersymmetric off-shell invariant, nor
whether some miraculous cancellation might kill
it in explicit calculations, but these escapes seem
highly unlikely in view of the close parallel to
one-loop supermatter. Furthermore, invariants
analogous to 6g may be constructed in higher
loops using more derivatives through the Zilch
procedure. " This class of invariants seems to
be exhaustive: There are no dynamically con-
served tensors cubic or higher in the curvature
(i.e. , no cubic conserved currents for a free
fieLd).

Extended supergravity. Ve—ry recently, it has
been shown4 that extensions of pure supergravity
into a larger, rigid, single, global multiplet ex-
ist, with internal symmetries such as O(N), N
-8. As stated above, these models avoid the
one-loop disaster of supermatter coupling, be-
cause one cannot use the form (7) constructed
from, e.g. , their lowest multiplet part without
violating the rotation invariance, and we believe
the same argument will exclude the correspond-
ing three-loop disaster. The point (which may
even hold in presence of extended supermatter)
is that the transformation rules, Eqs. (6) and

(10), do not commute with the internal rotations
and therefore there is no analog of (9). Should
this be the case on detailed examination of spec-
ific O(N) models, they would have no locally con-
structed invariants" which do not vanish on shell,
to any loop order.

Field redefinitions. —lt was already noted by
't Hooft and Veltman' that the one-loop diver-
gences e '[aR„,'+ hR'] in pure gravity could be
absorbed by an unconventional renormalization of
the metric g&, -g&, + e '(R&, + g&,R) since fR(g)- fR(g) + f(5R/5g) 5g. This procedure can clearly
be followed order by order to absorb any local
invariants which vanish on shell, by redefining
both the gravitational and y fields appropriately.
This somewhat unorthodox renormalization will
systematically shrink away divergent subinte-
grals, leaving only the local divergences, which
we have already dealt with. " There seems to be
no reason to doubt, at least in perturbation the-
ory, that the S matrix is unchanged by such field
redefinition, but this point clearly deserves care-

ful study.
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