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We present a global stability analysis of possible states in narrow current-carrying
superconductors below T, within time-dependent Ginzburg-Landau theory. A reversible
superconducting-to-normal transition may take place at a current density j, lower than
the maximum supercurrent'jm~. Localized phase slip occurs spontaneously in a narrow
range below j, .

Current-induced transitions in superconducting
filaments continue to be a puzzle. Simple "one-
dimensional" situations where the coherence
length $ (T) and the penetration depth A(T) are
large compared to the transverse dimensions of
the sample can be realized experimentally in the
vicinity of the transition temperature T, . Except
very close to T„where fluctuation effects domi-
nate, the normal state is approached through suc-
cessive voltage jumps. The intervening states
have been thoroughly investigated by Meyer' and
Skocpol, Beasley, and Tinkham. ' These authors
relate them to the appearance of localized "phase-
slip centers, " Hysteresis appears a few millide-
grees kelvin below T, .

No satisfactory theory of these phenomena is
available. The simplest time-dependent Ginz-
burg-Landau (TDGL) theory" is unable to explain
the observed temperature-independent differen-
tial resistance presumably introduced by each
center, 2 unless inhomogeneities much larger than
$(T) are significant. Nevertheless, it can pro-
vide valuable insight into the situation. We pre-
sent her e a complete picture of possible states
in an infinite homogeneous one-dimensional su-
perconductor within that framework. Previous
attempts in that direction ' ' suffered from ad hog
assumptions. Recently, Likharev' found a spe-
cial solution describing a superconducting. -nor-
mal (SN) boundary moving with constant velocity.
The latter vanishes at a well-defined current den-
sity j, below the maximum supercurrent i

I

j = Imp*/' —p'. (2)

As in Ref. 9, the complex order parameter ( is
normalized so that its magnitude equals 1 for
zero current; distance x, current density j, elec-
trochemical potential p, and time t are measured
in units of $ (T), j,= (Kc/2e)c/4m''$, p., = ej,) lo„,
and to= 4m''o„/c2= h/2p„respectively (o„ is the
conductivity in the normal state and to is the cur-
rent relaxation time). Finally, u is the order-
parameter relaxation time divided by t, . Equa-
tions (l) and (2) can be rigorously derived in the
so-called strong depairing limit for a dirty gap-
less superconductor; one then has u =12. For
weak depairing u = 5.79,' but microscopic theory
predicts important additional ter ms "'~ which are
not included here. We simply consider u as a pa-
rameter. The filament is assumed connected to a.

We show that the superconducting (alternatively
the normal) state is in fact globally unstable
above (below) j,. Within a limited range j &j
& j, we also find a new dissipative state describ-
ing localized phase slip o-scillations spontaneous-
ly occurring in a honzogeneous filament. Bound-
ary effects and results for weak links, which ex-
tend those of Likharev and Yakobson, ' will be re-
ported elsewhere. '

Our work is based on numerical and limiting
analytic solutions of the one-dimensional TDGL
equations,

u(/+ipse) g +(1
I gl )g
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dc-current source. To avoid numerical instabili-
ties whenever lg I vanishes, it is important to
solve for Ref and Imp. 9 General solutions were
computed using an implicit difference approxima-
tion scheme applied to a sufficiently long section
with boundary conditions specified as explained
below. Once initial transients had died out, sta-
ble stationary or periodic solutions were obtained.
Stationary solutions with spatially varying p. (not
necessarily stable once full time dependence is
included) were generated via a fourth-order vari-
able-step Runge-Kutta .integration started in a
region where nonlinear terms are negligible so
that p= —jx; g then obeys a complex Airy equa-
tion. '

There are two simple stationary solutions of
the TDGL equations (1) The normal (N) state:
g=-0, p'= —j; it is in fact stable (locally, i.e. ,
versus infinitesimal fluctuations) for all j c0."
(2) The usual current-carrying superconductinI,
(S) state with iL=-O,

0=f exp(i') e'=1-f-', j =f-'q (3)

For each j&j,„=2/(27)"'= 0.385 two such solu-
tions exist; they merge at j =j „. That with the
larger value of f„ is locally stable and becomes
unstable at j,„, the other solution is unstable. "
Although j „is usually interpreted as the criti-
cal current at which resistance first appears, all
one can say is that j,„represents the limit of
metastability of the zero-voltage S state.

We look for the critical value j, above which
the S-N transition takes place if one waits long
enough for all fluctuations with nonvanlshlng prob-
ability (i.e., finite energy) to occur. The S state
would then be globally unstable. Under equilibri-
um conditions, the principle of minimum free en-
ergy yields a rigorous criterion for global stabili-
ty. Not knowing of a similar criterion in situa-
tions where dissipation and nonlinearity are in-
volved, we use the following reasonable princi-
ple: A necessary condition for a locally stable
state to be globally unstable is the existence of a
finite tkreshold solution localized about that state
which neither decreases nor increases as t-~.
This leads us to consider stationary (or periodic)
solutions of Eqs. (1) and (2) asymptotically ap-
proaching the stable N or S states described
above. This was simulated by imposing I pl =0
or I( I

=f„at sufficiently la.rge distances and veri-
fying that numerical results were insensitive to
this procedure.

Stationary threshold solutions localized about
the normal state do indeed exist at low currents.
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FIG. 1. Spatial dependence of stationary solution as-
sociated with the global instability of the normal state
at a current density j= 0.25. The ratio of the order-pa-
rameter and current relaxation times is u = 5.79. The
order-parameter amplitude jg j and the electrochemical
potential p are plotted vs distance x (see text for appro-
priate units).

An example is plotted in Fig. 1 (u= 5.79; j=0.25).
In contrast to Winter and Doll, ' we find that such
solutions exist only below the critical current j,
identified previously by Likharev' (j,=0.335 for
u=5. 79, and j,=0.291 for u=12). For j-0 the
amplitude of the threshold solution goes to zero
(the Ansatz g= fe'" with fm -=j varying slowly com-
pared to y is a good approximation for uj «1; de-
tails will be presented in a full paper), whereas
for j-j, its width diverges, i.e., it degenerates
into two widely separated stationary SN bounda-
ries. We verified that these solutions are unsta-
ble when the full time dependence is included.
Near j, this is consistent with the observation
made by Likharev that a SN boundary moves to-
wards the normal side for j & j„whereas it
moves in the other direction for j & j, . Thus,
below j, the normal state is globally unstable;
we expect it to be globally stable above j, .

As for the superconducting state, we notice
that for all j&j,„, an unstable analytic static so-
lution of Eqs. (1) and (2) which differs only local-
ly from the uniform solution (3) has been found by
Langer and Ambegaokar (LA)." They identified
it as the threshold fluctuation for a single phase
slip: As in subsequent treatments" it was as-
sumed that the S state was re-established after
( had gone through zero at one point, thereby re-
ducing the net phase change y along the filament
by 2p."

Starting from a slightly perturbed LA solution
(below j,„) to initiate a phase slip, we find three
types of asymptotic behavior:

(i) Below a current j . somewhat smaller than
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FIG. 2. Localized phase-slip solution in a homogeneous one-dimensional superconductor at a current density j
=0.826. For a relaxation-time ratio u = 5.79 this corresponds to the lower bound j~. of the range where such solu-
tions occur. The order-parameter amplitude )gt and the electrochemical potential p are plotted (a) vs time at the
location (x= 0) of the phase slip; (b) vs distance x for times preceding, coinciding, and following the instant of
phase slip (dashed, fuQ, and dot-dashed curves, respectively). When t- + ~ the corresponding Langer-Ambegaokar
solution (Ref. 14) is approached (long-dashed curve). Appropriate units are defined in the text.

j, (j~=0.326 for u= 5.79 and j =0.284 for u
= 12), P heals back to the pure 8 state, often,
however, after several phase ships have occurred

(ii) Between j and j, a new locally stable so-
lution is approached. The filament is supercon-
ducting, except for strong localized oscillations
in which g rapidly goes through zero at one point,
while the voltage exhibits a sharp peak. The
phase y increases continuously by 2g between
such spontaneous slips. When j-j the period
goes to infinity; the corresponding solution is lo-
calized in space and time. It approaches the stat-
ic unstable LA solution for I;-~ ~, and performs
one phase slip in between. Figure 2(a) shows
I((t)i and p(t) at the site of the phase slip (x= 0).

In Fig. 2(b) Ig(x)i and p(x) are plotted at various
times; as j is increased above j . the maximum
lg(0)i decreases.

(iii) Above j, the order parameter performs os-
cillations with decreasing amplitude between
phase slips. , Eventually an expanding normal do-
main develops. Thus, in this range the LA solu-
tion represents the threshold fluctuation for nu-
cleation of the normal state, and the supercon-
ducting state is globally unstable.

As a result the LA theory'4 and subsequent im-
provements" describing thermally activated re-
sistance near T, need revision at high current
densities. This does not invalidate experimental
verifications of that theory performed to date
since they were restricted to j«j

We are confident of the accuracy of our compu-
tations since they are consistent with similar
ones for long weak links (length a z 20$). The lat-
ter were simulated by imposing I g I

= 1 and the
Josephson relation 6 p. = —

@ at the boundaries. As

j increases above j, we find a changeover from
behavior (ii), which Likharev and Yakobson'
failed to notice, to a solution of the form'

g (x, i) =g(x) +g*(a —x)e'~i'~, (4)

where g(x) is a stationary solution of Eqs. (1) and

(2) localized near one boundary and satisfying
g(0) = 1; the link is then norma, l except near its
ends. When uj or (uj)'"x are sufficiently large,
nonlinearities may be neglected, and g(x) is pro-
portional to the Airy function AiIe '""(uj)"' (x
—i/uj)J. We verified that (4) remains a good ap-
proximation except just above j,. The transition
at j, becomes smeared out in shorter links. In
the limit where a ~$ and u(a/2$ )'«1, the comput-
ed normalized voltage j (t) agrees well with the
analytic approximation presented in Ref. 9. When
u(a/$)'~36 we find hysteresis and strong devia-
tions" from an unjustified extension" of that ap-
proximation.

In conclusion, we wish to emphasize the follow-
ing points: Although thermal fluctuations are not
included explicitly in our treatment, their quali-
tative effects may be ascertained. In particular,
if sufficient time is allowed, the SN transition
should occur reversibly at j, . The times involved
may, however, be astronomically large in prac-
tice: Hysteretic behavior may occur. Clearly,
it should be influenced by end effects. "

In real quasi-one-dimensional superconductors
phase slips will presumably occur at weak spots,
so that several phase-slip centers may coexist.
This is the standard explanation for the experi-
mentally observed voltage steps. " Further cal-
culations including inhomogeneities are needed.

Within TDGL theory, we see no possibility for
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substantial "time -dependent supe rconductivity"
in a long homogeneous filament above j„ let
alone j,„, contrary to previous suggestions. ' '
Rieger, Scalapino, and Mercereau' obtained
large amplitude oscillations for j&j,„by forcing
2z phase slips whenever an ad hoc criterion moti-
vated by analogy with LA theory was satisfied.
Whether thermal fluctuation effects can be simu-
lated in this way, for that range, seems doubtful.
The "solutions" of the TDGL equations given in
Ref. 6 are, in fact, neither solutions (because
discontinuities in ( have been artificially intro-
duced), nor do they approximate any actual solu-
tions. "

One of us (L.K.) would like to thank the IBM
Zurich Research Laboratory for the opportunity
to work there on the present problem.
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My high-resolution studies of the bound-exciton luminescence in Ga-doped Si reveal a
triplet structure. Also, I report for the first time bound multiexciton complexes associ-
ated with Ga, which are similar to those previously reported for Si doped with P, Li, and
and B. In the case of Ga, however, the m =2 bound-multiexciton complex luminescence is
found to be split by an amount equal to the splitting between two of the bound-exciton lines,
strongly suggesting that the m= 2 complex decays into the bound exciton.

The nature of the bound-multiexciton complexes
(BMEC), whose luminescence has been observed
in lightly doped Si at low temperatures, "is an
unresolved problem in semiconductor physics.
We have undertaken high-resolution photolumi-
nescence studies of Si doped with a variety of im-
purities in order to obtain information as to the
multiplicities of these states. In this Letter I re-
port a number of new results obtained in Ga-
doped Si, including the resolution of the Ga
bound-exciton (BE) luminescence into a triplet
structure, the observation of BMEC associated
with Ga, and the doublet structure of the lumines-

cence associated with one of the BMEC. These
resu'its provide important new information for
any theoretical models of the BMEC, Completely
analogous results for Al-doped Si, as well as
those for some other impurities, will be pub-
lished elsewhere.

The results reported here were obtained from a
sample containing 1x10"cm ' Ga, along with a
small amount of P, immersed in either liquid He
between 1.6 and 4.2 K or liquid. H, at 15 K. The
luminescence was excited by -1.5 W of Ar-ion
laser light in an unfocused beam (d-4 mm). The
luminescence was analyzed by a Perkin-Elmer
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