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A Lagrangian is obtained by deriving the path-integral representation of the diffusion
process. . It can be applied, e.g., to nonequilibrium thermodynamics and to quantized mo-
tion in general relativity. In second quantization it is shown to lead to a particularly
well-behaved energy-momentum tensor as a source of gravity.

The recent development of systematic approximation schemes for classical processes® has generated
conisderable interest in obtaining a path-integral solution for the conditional probability density

(H= t .
Plg, t;q0,t)=f " Dula(m)]expl- [ arL(g(r), a(r))] (1)
a(ty) =q, o
of a nonlinear continuous Markov process [¢(t)=q,(¢), ¢5(8), . .., qn(t)]. Such a process is described by

the Fokker-Planck equation
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where p,=-i3V(q)/3q, is zero for stochastic processes. Since Eq. (2) gives a Euclidean representation
of Schradinger’s equation, the path integral (1) also has well-known applications there and V(q)#0 is
of interest in that case.

Procedures for the derivation of Eq. (1) have been proposed recently? which seem to indicate that a
unique representation (1) does not exist. In a separate paper I will show that these ambiguities are not
real in the sense that they arise from an inadequate treatment of various limits. Here I would like to
indicate the derivation and discuss the result for the Lagrangian L[g(7), ¢(7)]. This Lagrangian coin-
cides with the one derived earlier®:* for Q,,p(q)= Q, p independent of ¢, which has found important ap-
plications in critical dynamics in the meantime.® For the case with @,, dependent on ¢, my result is
novel. It rectifies an earlier incorrect result of mine® obtained by an oversimplified discretization
method. For one-dimensional phase space (which cannot have curvature) a recent result of Horsthem-
ke and Bach® is reobtained, while a result due to Stratonovich’ for multidimensional processes is found
to hold only for flat phase spaces [the metric which we use is defined after Eq. (11)]. For curved phase
spaces the Lagrangian seems not to have been known earlier. After giving its derivation, I will briefly
discuss an application to general relativity below. Applications to nonequilibrium thermodynamics
will be considered elsewhere.

The derivation of Eq. (1) from Eq. (2) is carried out essentially in two steps. First, the ordered
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operator function S(é/ Ve, q,t,+¢, t,) defined by
N{S(p, q,¢,1,)} = expL(t - t,)

3)

(where N is an ordering operator, which brings all _@ =Ve b to the left of all ¢’s regardless of their non-
zero conmutator) is determined as a power-series expansion in Ve up to terms of order € as an or-
dered function of p and ¢q. The function S is closely related to the Green’s function P(q,, 413 4o, t,) Of Eq.

(2) since
ap . =
P(qy, 415 qoy ) = IW exP[Zp(‘h - 40)] S@, 490, 4 t,), 4)
where p are n real c-number variables. From Eq. (4) and the property,
N-1
P(qy, tys Gos o) =f{ Hldqu(Qj TR FIHY N tj)}P(ql, 113405 to) s (5)
\ J =
I obtain (with €=¢;,,-¢))
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The second step of my derivation consists in the evaluation of the right-hand side of Eq. (6). SinceI
will require the path integral (1) to take the same form for continuous nondifferentiable functions q(7)
as for continuous differentiable ones (since the latter may be considered as a special case of the for-
mer), it is sufficient to consider the right-hand side of Eq. (6) just for continuous differentiable func-
tions ¢(7). In that case I may put (g,,,-¢,)/€~ ¢(r). (Note that the discretization process in the re-
verse direction is not unique in the same way.) Let us separate the logarithm in Eq. (6) in the limit
€~ 0 into a regular part Q[¢, ¢(7), ¢(7)] vanishing at least like €, and a remaining irregular part Ir[e,

4(7), q(7)]. Then Eq. (1) is obtained with
Dplq(7)] = elff,l{ _Ai_-I:[dq,-] explIrfe, 4(7), (7)) },

LIg(r), g(1)] == lim € 'Q[¢, ¢(7), ¢(7)].

€0

Applying this method to Eq. (2) I obtain

(M
(8)
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2 (9

oq, <7@l) ’

and @=|Q,,|l. R is a complicated algebraic form
in @,, and its first- and second-order derivatives
with respect to q. Equation (10) is made beautiful
by the fact that R is just the Riemann curvature
scalar® if @,,”" is defined as the covariant metric
tensor in phase space. It is easily shown that ¢,
and %, then transform like contravariant vectors,
whereas the Lagrangian (10) and the measure (9)
transform like a scalar and a scalar density of
weight — 1, respectively. Equation (10) for V =0
gives the most general Lagrangian needed in non-
equilibrium thermodynamics [a formulation in
terms of space integrals is a trivial generaliza-
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tion of Eq. (10)]. The various special cases con-
tained in Eq. (10) for R =0 have already been dis-
cussed above. If the time is taken imaginary and
again R =0, various well-known results of Feyn-
man’s space-time approach to quantum mechan-
ics (including the case of an external electromag-
netic field) are contained in Eqs. (9) and (10).°
For R#0, a rather amusing application of my
result to general relativity can be given. For this
purpose, it must be recognized that Eq. (2), af-
ter the replacement {~ —{u (where u is a real,
redundant, fifth parameter), is a possible (al-



VoOLUME 38, NUMBER 2

PHYSICAL REVIEW LETTERS

10 JANUARY 1977

though somewhat unusual) representation of the
Klein-Gordon or Dirac equation.’® Let us first
assume that R =0 (i.e., no gravitational fields are
present) and look at the motion of a free scalar
Klein-Gordon particle with real wave function ¢
and mass p,. In that case, Eq. (2) [with ¢=— iy,
qu=x*, V=uq"/2, h,=0, (-VQ)P=¢, and Q,,”*
=g, as metric tensor with the signature (+, -, -,
~) in flat space] gives an adequate description in
first quantization, if only solutions independent
of the redundant fifth parameter « are singled out
at the end.’® The “classical” Lagrangian for a
single particle in this representation can then im-
mediately be read off Eq. (10) so that

R a2)

where the dots are now derivatives with respect
to u. The principle of general covariance im-
plies that Eq. (12) also holds in gravitational

" fields where R #0. However, this is compatible
with Eq. (10) if and only if I change V=p.%/2 in
Eq. (2) into V=p,2/2+R/12. Thus, in a gravita-
tional field the Klein-Gordon equation reads

8"8,8,0=-p20-1Ro, (13)

where 8, denotes a covariant derivative. Note
that ¢, in contrast to a classical trajectory, al-
ways probes a finite region in space-time. Hence,
the direct application of the principle of equiva-
lence or general covariance to Eq. (13) is not pos-
sible, which is why I first considered the “clas-
sical” Lagrangian (12), where the application is
possible., Equation (13) has the Lagrangian den-
sity

1 89 89 1 1 1
9P 99 12 2 L o 1
L2398 xF o gt ¥ RO +1e G R

(14)

where the Lagrangian density of the gravitational
field has been added with the last term in Eq.
(14).** As a consequence of the new term,

-~ $R¢? the gravitational field equations, ob-
tained from the action principle, are changed in
such a way that the source of gravity no longer

is the conventional energy-momentum tensor 7',.

In place of T,,, a new tensor

9,“,=TW—%(8“ a,,-g“,,eﬂz>>\)(p2 (15)

appears to lowest order in the gravitational coup-
ling. 6, still has all desirable properties of an
energy-momentum tensor.'? Callan, Coleman,

and Jackiw'® have shown that 6,,, in contrast to
T has finite matrix elements in a renormal-

v
iz‘fable field theory (e.g., ¢* theory) to all orders
of perturbation theory in any coupling constants-
(except the gravitational coupling, which leads to
a nonrenormalizable theory). While these authors
had to change the field equations in second quanti-
zation in an ad hoc manner in order to introduce
6,y in place of 7', my result (10) explains how
this new energy-momentum tensor appears in a
natural way as a consequence of the principle of
general covariance for the classical trajectories
in space~-time. By way of an example I have thus
shown something very surprising and remarkable:
Some of the divergencies of quantized field theory
can be avoided by the judicious use of the equiva-
lence principle.
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