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The characteristic dissipation process for conventional superfluid flow is phase slip-
page: motion of quantized vortices in response. to the Magnus force, which allows finite
chemical potential differences to occur. Topological considerations and actual construc-
tion are used to show that in liquid He-A, textures with vorticity but no vortex core can
easily be constructed, so that dissipation of superfluid flow can occur by motion of tex-
tures alone without true vortex lines, dissipation occurring via the Cross viscosity for
motions of l.

Usually dissipative relaxation of the order pa-
rameter of a broken-symmetry condensed sys-
tem occurs by motion of order-parameter singu-
larities. For instance, magnetic hysteresis in-
volves the motion of domain walls, slip of solids
that of dislocations, and self-diffusion that of va-
cancies or interstitials. These are 2-, 1-, and
0-dimensional "order-parameter singularities. "
All are characterized by a "core" of atomic di-
mension where the order parameter departs sub-
stantially from its equilibrium value.

One of the clearest examples of this general
rule is phase slippage in superconductors (flux
flow and creep) and in litluid helium II: The only
way in which these superfluides in bulk form can
sustain a gradient of chemical potential, and thus
flow dissipatively, is by the continual motion of
quantized vortex lines transverse to that gradient.
The controlling equation is'

ltd(p, —q, ) dn„„„,„„
dt

"
dt
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where (p,, —p ) is the time-averaged chemical po-
tential difference between two points, y, —y, is
the phase difference of the mean particle (or pair
for superconductors) field, and dn„„;„,/dt is
the rate of passage of quantized vortices across
the line joining 1 and 2.

Quantized vortex lines can exist' in the aniso-
tropic superfluid 'He-A, but as one of us has
shown, ' the circulation around such a vortex is
not a topological invariant, as it is in the simple
superfluids; it is, in those, equivalent to the so-
called winding number. " In 'He-A, on the other
hand, by making a rotation of the order param-
eter which is continuous everywhere, i.e. , by
superposing a "texture, " one may convert a vor-
tex line of either sign into the opposite one or in-
to a de Gennes disgyration; and two vortex lines
of the same sign can in principle annihilate each
other. Those topological results demonstrate
that quantization of vorticity and vortex line mo-
tion are not the keys to dissipative processes
that they are in the conventional cases, since
they destroy the second equality of Eq. (l). None-
theless the first equality of Eq. (l) shows that
phase slippage by one mechanism or another is
necessary in order to feed energy from super-
fluid flow into dissipation processes (since the
energy dissipated is Ap, dN/dt =b p J~,). We de-
scribe here some likely mechanisms by which
dissipation can occur by phase slippage without
order-parameter singularities, by the motion of
textures alone.

Briefly the geometry of the order parameter in
'He-A is that of the orthogonal triad of vectors l,

and i~„wher e l is the orbital angular mo-
mentum of the pairs, and 6, and i6, are real and
imaginary vectors representing the two compo-
nents of the anisotropic energy gap. Rotations of
b, and ih, about l are phase changes of the order
parameter, while rotations of l rotate the anisot-
ropy axis of the system. Rotations of a rigid
frame generate the group SO(3) which has the to-
pology of projective space P„ the three-dimen-
sional sphere 8, with diametrically opposite points
on the surface identified. The rule of Ref. 3 is
that one maps paths around the singularities in
real space into this gap-parameter space, and if
the path cannot be deformed continuously into a
point, the singularity is stable. 360' rotations
are equivalent to paths between the two identified
poles on the sphere and are topologically nontriv-
ial, but a second 360' rotation in any direction
returns one to the starting point and the resultant
is equivalent topologically to no rotation at all.
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FIG. 1. Sketch of the 4m vortex texture. Lines are
stream of l, and D and i~ rotate as sketched. {a) Side
view; (b) view along the length.

Thus, in principle a 720 vortex requires no core.
These ideas led us to search for a texture which

can play the role of a double vortex line, of which
an example is the following (see Fig. 1). On the
axis of a circular cylinder E is in the -z direc-
tion, 4, and ib, in say the x and y directions, re-
spectively. Along radii of this cylinder / rotates
about the Fp direction through an angle f (r), with

f (R) = m, f (0) = 0. At the cylinder R, we will find
l pointing in the +z direction and the phase rotat-
ing by 4z as we circumnavigate the cylinder.
(This is a simple modification of the Brinkman-
Osheroff texture. ') A generalization of this to a
texture equivalent to a vortex sheet can easily be
made.

Another peculiar property of this texture is that
it can terminate in a "hedgehog" or pointlike ob-
ject at which the lines of l splay out in all direc-
tions. The phase rotates by 360 while l rotates
by 360' around the circumference of the hedgehog
(see Fig. 2).

These vortex textures have two properties
which suggest that they may play a role in dynam-
ical processes. First, having no core, the ener-
gy will be less than that of two normal 2m vortic-
es by a factor of order 2 in(R/g) (2 for the double
quantum) which will usually make them energet-
ically cheaper. Second, they have no localized
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perience the characteristic Magnus force in the
presence of a background superfluid flow field e„

I M
—pv XG, (2)

where 0 is the circulation, in this case equal to
h/rn in magnitude. But much more general situa-
tions can be understood if we simply retain the
idea of a locally definable phase, except possibly
where l is moving too fast, and rely on the sec-
ond fundamental equation

dN ~„18(E)
dt 8 Btp

(3)

FIG. 2. Termination of 4x vortex texture in a "hedge-
hog, " which is the texture equivalent of a "monopole"
attached to the end of a vortex line.

pattern of high superfluid velocity and thus the
characteristic and puzzling problem of vortex nu-
cleation will not be as serious.

On the other hand, the phase slippage theorem
[the first equality of Eq. (1)j is still valid between
any two points in the fluid where the orientation
of E does not change. This is because the usual
argument from the number-phase commutation
relation or from gauge invariance' that dy/dt
equals 8E/sN is universal to all superfluids, but,
if l is moving too rapidly, it is not safe to equate
(&E/S+ with p, : hence the proviso on motions of
E. y is, of course, not a velocity potential but is
uniquely definable when l is fixed, as it will be
effectively, in most physical situations, at bound-
aries by the boundary condition on I, and in many
other situations in the bulk of the system because
of orienting flows and fields or the Cross "nor-
mal pinning" effect. ' Equation (1), not its char-
acter as a velocity potential, is the key to the im-
portance of the phase y in dissipative processes.
For instance, flow between two orifices at which
I can be expected to be pinned (see, for example,
Wheatley') will see a chemical potential differ-
ence obeying the phase slippage equation, and dis-
sipation can occur by motions of vortex textures
across the path between the orifices. The impor-
tance of vortex textures in this context arises
from the fact that l is fixed in direction in the ex-

es

terior region, and with l fixed in the exterior re-
gion changes in vorticity are still quantized, The
problem of boundary conditions will be discussed
in more detail in a future publication.

In this situation at least, the textures will ex-

Equation (3) implies the more general. remark'
that a current source may always be inserted as
a phase-dependent term in the Hamiltonian:

Hence, a current source exerts an appropriate
force on any texture whose motion can allow
phase slippage.

The final physical fact is that textures move
relatively slowly and dissipatively in 'He because
of the Cross "normal pinning" effect, ' so that vor-
tex textures can only affect very low-frequency
phenomena. %e envisage three flow regimes.

(1) For high-frequency phenomena such as
fourth sound and vibrating wires, or for large
chemical potential differences, 'He will behave
like a conventional but anisotropic superfluid,
since orbital motion will be pinned and phase slip-
page can only occur by motion of conventional
vortices.

(2) In the absence of a magnetic field and for
moderately low frequencies, l will be free to ori-
ent at will and vortex textures will play a great
role in causing dissipation. The critical velocity
for nucleating textures should be extremely low,
of order h/rnR where R is an apparatus size, or
- 10 ' cm/sec. This is even lower than what is
observed in heat flow experiments by %heatley's
group, but in the right range. It seems possible
that in the absence of a magnetic field almost any
flow will fill the sample with enough vorticity to
damp out fluctuations and the relatively quiet be-
havior at low fields could be a turbulent regime.

(3) In a magnetic field l is oriented by the di-
polar energy for structures larger than the length

R~ of order -100 pm' determined by the ratio of
dipolar to current energy. The vortex structures
must be of this order and thus contain velocities
of order h/mR z

- 10 ' cm/sec. This is again the
right order of magnitude, but a bit fast relative
to some critical velocities measured in resonance
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and other experiments. In both of these cases, it
is easily possible that a regular motion of vortex
structures can be set up under appropriate flow
conditions, which we speculate may be related to
certain observations of regular and irregular
orbital fluctuations. '

It is interesting to speculate on the outcome of
a measurement of quantized vorticity in 'He-A
by the Vinen' vibrating-wire experiment or other-
wise. At a Vinen wi. re the boundary condition will
require l to be radial and the phase may rotate by
any integer number of units 2m, a texture in, for
instance, a cylinder can simply add or subtract
4z to this, so that any integer amount of vorticity
is possible. However, the results might be cha-
otic in the absence of a field because of vortex
textures throughout the liquid. With a field the
wire can again have integer vorticity but in the
surrounding liquid the 4m double vorticity is the
most stable vortex line, consisting of a "core"
which is a Fig. 1 texture of size -R~, and a, con-
ventional outer region. Thus, one may tend to
add or subtract double units.

In summary, the most important point to be
made is that dissipation in this superfluid is qual-
itatively different from that in other superfluids
and in most broken-symmetry systems, in that
it can occur by the motion of textures (rather like
"topological solitons") and not only by singular-
ities of the order parameter. Thus, the proper-
ty of superfluidity takes a very novel form in this
case.
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examined. We thank the Aspen Institute for hos-
pitality during the preparation of this Letter.
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We demonstrate formation of an electron-hole liquid in CdS by phase separation of op-
tically excited carriers. Measurement of the electron-hole-liquid density as a function
of pump intensity and sample temperature determines the liquid portion of the liquid-gas
coexistence curve giving a low-temperature liquid density of 2&10 cm and T = 55 K.

We present measurements which demonstrate
the phase separation that occurs when an electron-
hole litluid (EHL) forms by condensation from a
less dense gas of excitation in CdS. These mea-
surements allow construction of the liquid por-
tion of the gas-liquid coexistence curve. Experi-
mental identification of the EHL phase, bound by
13 meV, in highly excited CdS has been recently
reported' ' and these measurements are in good

agreement with the calculations of Beni and Rice.4

The liquid chemical potential was found to be in-
dependent of pump intensity at 2'K, ' suggesting
that phase separation was occurring but no other
evidence for this phenomenon was provided. The
new results reported here provide additional evi-
dence for phase separation and establish that the
critical temperature, above which the liquid does
not condense, is T, = 55'K. In addition the low-


