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Deviations from Dynamic Scaling in Helium and Antiferromagnets

C. De Dominicis and L. Peliti*

Centve d’Etudes Nucléaives de Saclay, 91190 Gif-sur-Yvette, France
(Received 23 November 1976)

We compute up to order €? all dynamics transients (subleading exponents) for helium
and symmetric antiferromagnets. We also discuss the relevance for helium of a fixed
point which leads to a “weak” dynamic scaling.

Critical dynamics of systems like helium and symmetric antiferromagnets (AF) involving reversible
mode coupling has been widely studied'? using Wilson’s® recursion method on stochastic Langevin-like
equations or techniques of field renormalization which are useful to demonstrate scaling properties
and get a relatively easy access to higher-order computations.*® We have taken advantage of these

techniques to investigate the two-loop (i.e.,

second order in € =4 —d) approximations for the critical

dynamic behavior of helium and O(z) symmetric antiferromagnets. In particular we obtain to order €2
all subleading exponents (transients) which govern corrections to dynamic scaling. This allows us to
distinguish in the e-» plane, besides region (I) where standard dynamic scaling® holds, a region (II) in-
volving “weak” dynamic scaling due to the occurrence of a “dangerous” irrelevant parameter.” In (I)

the dynamic exponent is® z=d/2; in (II) it turns out to be z

=3(d+w,), where w, is one of the three (He)

or two (AF) subleading exponents which are computed here. The possible, but unlikely, physical rele-

vance of region II for He is also discussed.

We write the Langevin stochastic equations for He introduced by Halperin, Hohenberg, and Siggia' in

the form
i . 53¢ .
Do°(2) To(1+1ib,) 0 +1go0, () (t)

. o3¢
o(t)= Ay V2
Eolt)= A 0E, (1)
where the space argument is understood and

1= fddx{z (‘V‘/)o l2+7’ol¢o iz)"'zE +voE,

Here ,° is the (complex) order parameter field
(a=1 for He; we use a=1,
served “energy,” and n“ and ¢ are the associated
Gaussian noises whose correlations are related
to the kinetic coefficients I'j and -A,VZ by Ein-
stein relations. v, and u, are the static couplings
and g, is the reversible mode coupling constant.
Equations for the AF case, where the order pa-

2oal o P+ (o /3( 2

+1 (8, 1)

zl)Oo{(t) 51,[) or(t)> g(t)) » , (2)

oot P2 (3)

...,n/2), E, is the con-

rameter ¢, is a real n-component vector (n=3)
and E,*® represent the generators of the O(n)
symmetry, are simply related’? to (1)—(3).
These equations are cast in a form tractable by
field theoretic methods by using the Martin-Sig-
gia-Rose Lagrangian® which involves conjugate
variables {,%and E,. The statics as contained in

505 -



VoLuME 38, NUMBER 9

PHYSICAL REVIEW LETTERS

28 FEBRUARY 1977

Eq. (3) has already been discussed,® and is re-
normalized*® through

‘po:Zw-l/zlp, E,=Z; '"*E, (4)
ug=uuZ,/Z,% yo=utyZ /7. (5)

Static asymptotic behavior is dominated by the
leading exponents

nr=n=pdnZ,/dy, 15=pdinZg/dy,

taken at fixed point values u* and y*. (The deriv-
atives are meant at fixed bare parameters, ube-
ing a wave vector characterizing the so-called
subtraction point.) The fixed point is the stable
zero of the Wilson functions W;=pdj/du (j =y, u),
and slopes w,=dW,/dj taken at the fixed point are
the subleading exponents (transients), with w,

= - a/vand y*=0 for He.

The dynamic field theory is more subtle to cast
in renormalized form. Indeed the basic Green’s
functions constructed with ¢, ¢, E, and E are
not simply related to the static ones; in particu-
lar their zero-frequency limit is not a static func-
tion. On the other hand, the renormalization fac-
tors Z, (I=y, E,u,y for the statics) are usually
fixed in a standard way by imposing normaliza-
tion conditions on these functions at some arbi-
trary (subtraction) point in wave-vector-frequen-
cy space. This procedure, therefore, inevitably
mixes statics and dynamics in the renormalized
perturbation expansion, making the above defined |

static functions n; and W, dependent upon purely
dynamic parameters. This leads of course to the
same physical results (e.g., exponents) but in a
both unphysical and complicated fashion. The way
out is either to impose normalization conditions
with good static limits (using response functions
rather than basic Green’s functions) or to resort
to the so-called minimal renormalization proce-
dure'® which does not require an explicit choice
for the normalization conditions and separates
static and dynamic renormalization. We use this
last procedure. Together with a suitable renor-
malization for  and £, we need to introduce

T,=TZ./Z,, (6)
Ao/To=(AT) ZyZ /2,2, (7)
bo=bZ,, (8)
80 =18’ Zg, 9)

with the definitions A= A/T and f =g2/AxT'% By dif-
ferentiating at fixed bare parameters, we obtain
the Wilson functions

(10)
(11)

Wy==x0r=14),
Wp=—f(e+nr+n,+ng),
respectively, from (7) and (9) which derives from
a Ward identity.! Notice that (10) and (11) lead to
Nr*¥=n,*=—ng* - €/2, as soon as \*, f¥#0, «,
For the cases of interest (He, symmetric AF)

the relevant fixed point is at y*=0, b*=0. We
get, for the extended He case,

- dln(jur/ZL) - I{AA . 8({2:;)3 [4(2+>\)ln i—l(g-f% +9(1+2)(4+n)Ind — (4+n) -2 (8 +n)]
+ 2—(%1—2);1&6 In¢ -1), (12)
R s Y
and for the AF case
Nr=-— %(n -1)+ L;%iz—(f{)—:—)[(z-nm)(zﬂ) %—ln g%& +(m+2)In 12:7\
P L. (271n%—5)+n—1] + ﬂ%}%guz(sm%—l), (14)
e g [P R  O ],

The transients are the eigenvalues w; of the 5X5 matrix W ,/j l =u,y,f,b. With the procedure used
here, the static («,y) and dynamic (f ,1,b) parts of the matrix decouple. For symmetric systems (y *

=0) only the f and A components remain coupled. Solving for fixed points given as the zeros of (10) and
(11), we find, besides the fixed point I of Halperin, Hohenberg, and Siggia, a fixed point II with x* = o,
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The transient exponents for fixed point I are

w,=€ —0.3135¢%= (0.69; 0.78),

w,=1€ —0.1498¢%=(0.10; 0.17), (16)
w,= 3¢ —0,3618¢%=(0.39; 0.53),

for He; and
w,;=€-0.3643¢%=(0.64; 0.76), (17)

wy,=2€-0.1156€%=(0.26; 0.29),

for AF, where the numbers in parentheses are
the value for € =1 followed by the Padé-Borel"!
value. For fixed point II they are

w;=€ —0.2374€*=(0.76; 0.82),

wy = — 3€+0,2887¢2= (- 0.04; - 0.20), (18)
w,= %€ —0.1959¢%= (0.47; 0.53),
for He; and
- _ 2 N
w; =€ —0.2064€2= (0.79; 0.84), (19)

wy=—2€+0,0946€%= (- 0.51; - 0.49),

for AF. Gunton and Kawasaki? had already no-
ticed this fixed point for AF, where it shows a
definite instability. However for He we get a suf-
ficiently small w,!" for €=1 to allow for inquiring
into a possible stability of II. Indeed in the e-n
plane, the line w,=0 which separates regions I
and II is tangent, for €=~0, to T,:m=4 -pe, p=19
xIn(4) - £=12.80, and the physical point €=1,n=2
is on the II side of T,. Which side it lies of w,
=0 cannot be decided for sure to this order of the
expansion. The situation bears some analogy with
that of the line W, 0 which separates the symmet-
ric and asymmetric regions and is tangent to
T,:n=4 ~4¢€ leaving the physical point on the sym-
metric side of 7,.'% In this last case it follows
from o/v<0 that €=1,n=2 does lie in the sym-
metric region although the € expansion cannot
guarantee it. The situation is clearer for AF
(T,:n=3+0.55¢) where the physical point (e=1, %
=3) appears definitely inside region I.

The three dynamic transients computed in (16)
for He [two in (17) for AF] are to be taken into
account in experimental fits. The slow transient
w, may account for some of the discrepancies
left over in fitting thermal conductivity'® or am-
plitude ratios.*

In view of the small values obtained for w, at
both fixed points [ (16) and (18)], it is legitimate
to investigate what consequences would follow if
fixed point II were the relevant one for He.

Dynamic scaling.—By integrating Callan-Sy-
manzik equations, one obtains a characteristic
frequency of the form

Wk, £)=R*QURE, (LE)“N),

where ¢ is the correlation length and the last ar-
gument in Q refers to the A dependence.

Above T, w, is regular in A, and therefore re-
stricted scaling holds with a modified exponent

(21)
Wy =N * =% (22)

as follows from (10) and (11). On the other hand,
wg is asymptotically proportional to A, yielding

(20)

Z=%(d+w>\),

wg~ kFONQ g(kE), (23)
a violation of extended dynamic scaling. It fol-
lows that the thermal conductivity behaves as
g(€+w))/2 instead of £ /2, A precise measurement
of the asymptotic ¢ dependence would give w,.

If we were to accept as the asymptotic one the
value suggested by Ahlers'3 (z0.55), we would
get the estimate w,~0.1.

Below T, the characteristic frequency for k.
«1 takes the form w_~ck+iDk? where the sec-
ond-sound velocity ¢ vanishes like £ _¢/27! in
agreement with hydrodynamics, whereas the sec-
ond-sound attenuation coefficient D goes like
g (€rw /2 3 yiolation of dynamic scaling.

Amplitude ratios.—Some of the amplitude ra-
tios possess a nonsmooth ) dependence for x — o,
They acquire a nonuniversal character, thus leav-
ing some room for data fitting. On the other hand
they also acquire a ¢ dependence for fixed k¢;
e.g., wg/w, and, below T,, Imw_/Rew. are pro-
portional to x and AY2, i.e., £“* and £“M?, respec-
tively. For the (last) measurable ratio this en-
tails a 25% variation in the experimental range,
not incompatible with the accoustical data of Ty-
son.' For the universal ratio w,/Imw”, the pre-
vious (Halperin, Hohenberg, and Siggia) not too
good agreement is made worse by a factor of 2.
Finally the standing conflict with light-scattering
experiments'® is rather aggravated: The second-
sound attenuation coefficient D, which remains
constant in these experiments, varies like £1/2
for fixed point I, and like £ (1*“N/2 for fixed point
II. These last two arguments are probably the
best against the physical relevance of fixed point
II.

*On leave of absence from Istituto di Fisica ‘“G. Mar-
coni,” Rome, Italy.
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Phase Slippage without Vortex Cores: Vortex Textures in Superfluid 3He

P. W. Anderson
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The characteristic dissipation process for conventional superfluid flow is phase slip-
page: motion of quantized vortices in response.to the Magnus force, which allows finite
chemical potential differences to occur. Topological considerations and actual construc-
tion are used to show that in liquid *He- 4, textures with vorticity but no vortex core can
easily be constructed, so that dissipation of superfluid flow can occur by motion of tex—
tures alone without true vortex lines, dissipation occurring via the Cross viscosity for

motions of I,

Usually dissipative relaxation of the order pa-
rameter of a broken-symmetry condensed sys-
tem occurs by motion of order-parameter singu-
larities. For instance, magnetic hysteresis in-
volves the motion of domain walls, slip of solids
that of dislocations, and self-diffusion that of va-
cancies or interstitials. These are 2-, 1-, and
0-dimensional “order-parameter singularities.”
All are characterized by a “core” of atomic di-
mension where the order parameter departs sub-
stantially from its equilibrium value.
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One of the clearest examples of this general
rule is phase slippage in superconductors (flux
flow and creep) and in liquid helium II: The only
way in which these superfluides in bulk form can
sustain a gradient of chemical potential, and thus
flow dissipatively, is by the continual motion of
quantized vortex lines transverse to that gradient.
The controlling equation is’

(b = ) = (B =0, Dries 1)

dt .’



