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The results of a new calculation of the O(~) corrections to the decay rate of orthoposi-
tronium are presented. The rate is r = r'[1 —(a/r)(10 34.8+ 0.070)] = (7.0979+ 0.0012) x 106
sec . This is substantially below all measured rates as well as previous theoretical es-
timates. We provide further justification for the computational techniques employed.

The measured rates are presented in Table I.
The theoretical rate quoted above is inconsistent
with all of the experimental rates. However the
experimental situation is inconclusive at present
because of the substantial difference between
rates measured in SiO, powder' and in vacua and
those measured in gases. +' Should the difference
between theory and experiment persist it will be
necessary to compute corrections of orders n'inn
and A

The three-photon decay amplitude for positron-

TABLE I. Experimental determinations of the decay
rate of orthopositronium into three photons.

Ref.
Rate

(10 sec ')
Deviation

from theory

7.104+0.006
7.09 +0.02
7.262 + 0.015
7.275 + 0.015

(9.9+ o 4) (~/~) r'.
(3~1)(~/~) r'

(19.4+ .0)(9~ /)r'
(14.1 + 0.9)(e/vt)1

The decay rate of orthopositronium into three .

photons is the only decay rate of a purely quantum
electrodynamic system that has been measured
to an accuracy of better than 1%. The possibility
suggested by recent experiments" of as much as
a 2% discrepancy between existing theory and ex-
periment necessitates a critical re-examination
of the theory. In this Letter we present the re-
sults of a new calculation of all order-n correc-
tion to this decay rate. The complete problem
was first considered by Stroscio and Holt. ' Al-
though we agree with the method of computation
employed by these authors, our final result is
considerably lower than their rate. We obtain

1, „„,=r'[1 —(a/~)(10. 348~ 0.070)]

= (7.0379+ 0.0012) &10' sec ',
where F' is the lowest-order rate:

21'g
(2 ), I- -l.f (K, ~ (2)

For Ipl «m„(» becomes (in the atom's rest
frame where K'= 2m, —a'rn, /4) '

(as'(K P)
2

=—0 p' — (2K')"'u(p)v(-'fi)&NR (p),

where gNR is the nonrelativistic Schrodinger wave
function;

(P) =[8m@/(p +y ) ](,
(.=CNR(x = o) = (r'/~)"',

and y = o.m, /2.
The lowest- and first-order terms in the ortho-

positronium decay rate result from the kernels
in Fig. 1. It is important that the decay kernel
contains all interactions not already included in
the wave function. Thus graph (g) in which a
transverse photon is exchanged by the electron
and positron must be considered. The instanta, -
neous Coulomb interaction is part of the wave
function.

The only contributions to order Q.F' from graphs
(b) through (g) come from the region of small
relative momentum [P -0 (z)] in Eq. (1). Also,
the effects of binding in the decay kernel are neg-
ligible here. Thus the decay amplitude may be
expressed in terms of the nonrelativistic wave
function and the real part of the electron-positron
annihilation amplitude (which includes the spin

ium is

T(k, )= fd'.P (2~) 'P, s(K,P)i'(K, P,k, ),
where g ss is the Bethe-Salpeter wave function and
% is the two-particle irreducible electron-posi-
tron decay kernel. Adopting the usual perturba-
tive treatment, we replace )Bs by gas, the solu-
tion of the Bethe-Salpeter equation with an instan-
taneous Coulomb kernel':
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factors) evaluated on mass shell:

Tb z(k, ) =(4m, )"'Jd'p (2m) 'p„R(p)Re[Nb
&

'(p, k, )] =(4m, )"'g, Re[&b z
'(O, k,.)],

where R' has been replaced by 2m, . The imaginary part of the amplitude vanishes below threshold and
therefore should be omitted. Also, 3Kb

&
is well behaved for P -O(y) «m, and may be replaced by its

value at threshold (p= 0) to the relevant order in n.
The lowest-order contribution to the decay rate comes from graph (a) which gives I' in the small-p

regime. Contrary to the statements made in Ref. 3, relativistic corrections from the wave function
and from the propagators in this graph give corrections of order n to the amplitude. Generally these
corrections take the form

( I')"'fd'P[r/5'+ r')'] [f(p) —f(o)1,

where f(p) has no explicit dependence on n. As argued in Ref. 3, f(p) may be expanded in a power se-
ries in p/m, for p -O(y) «m, . Since terms linear in p integrate to zero, the leading contribution to
f(p) -f(0) is proportional to p'/m, '-O(n') fox P nonxelativistic. Thus for P-O(y) there is only an O(u')
correction to the amplitude. However the operator p'/m, ' leads to a linear divergence as p -~ when
introduced in 67,. This indicates that the dominant contribution to 6T, comes from the relativistic re-
gime [p -O(m, )] where a Taylor expansion is inappropriate. For p -O(m, ), the integrand in Eq. (1) is
of order n/m, ' and d'p is of order m, '. Therefore 5T, is of order n(I')"', resulting in an O(o.) cor-
rection to the rate.

These O(o.) corrections from graph (a) are most easily computed in conjunction with those from
graph (g). Simple power counting arguments, similar to those used above, together with the Bethe-
Salpeter equation [Eq. (2)] assure that evaluating kernels (a) and (g) with the Bethe-Salpeter wave func-
tion is completely equivalent in our order of approximation to evaluating graph (g') on mass shell with
the nonrelativistic wave function (Fig. 1). Graph (g ) is identical to (g) but with the transverse photon
propagator replaced by the complete photon propagator. Binding corrections in Ãz. are O(n') and may
be safely ignored.

Thus the entire decay amplitude including radiative corrections of O(n) can be expressed in terms of
electron-positron annihilation amplitudes evaluated on mass shell and the nonrelativistic Schrodinger
wave function:

T, P, ,~(k,.) =(4m, )"'(,Re[Nb f '@i=0,k,.)]+(4m,)"'jd'p (2v) 'p»(p) Re[SR&. '(p, k,.)].
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FIG. 1. The orthopositronium decay kernel contribut-
ing to O(eI ). Graphs (a) and (g) may be replaced by
(g').

Clearly this method of computation is gauge inde-
pendent to this order and we are free to evaluate
% in the Feynman gauge.

The O(n) corrections to the rate from graphs
(b), (c), and (d) are

Fb =[4.791+ 0.003+ 4 in(X/m, )](n/m)1',

r„=[-2.868+ 0.003 —6in(~/m, )](c /~)1'.

These agree with the results in Ref. 3, exhibited
here in Table II. The diagrams were renormal-
ized on mass shell in the usual fashion.

Kernels (e), (f), and (g') were computed inde-
pendently by each of the authors. Two methods
were employed to perform the loop integrations.
In one, standard Feynman-parameter techniques
were used, while in the other, integrations over
the loop momenta (k) were performed directly.
For the latter technique, the 0' contour was
closed at infinity and the residues of the propaga-
tor poles computed. All results agreed. The con-
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TABLE II. Theoretical determinations of the G(o. )

corrections to the decay rate of orthopositronium [in
units of (o/vr)I' J. Infrared infinite terms have been
omitted.

This paper Ref. 8

4.791+0.003
—2.868+ 0.008
—8.562 + 0.004
—0.809+ 0.004
—7.90 + 0.07

—10.848 + 0.070

4.785 + 0.010
—2.8716+ 0.0086
—8.855 + 0.008

—0.5+ 0.2
3.8+ 0.4

1.86 + 0.45

'r~ = —0.741+ 0.017 is quoted in Ref, 9.

tributions from graphs (e) and (f) are

r, = (- 3.562+ 0.004)(n/m)r',

r f = (- 0.809+ 0.004) (o,/p) ra.

These numbers are in slight disagreement with

Ref. 3. The second rate also disagrees slightly
with tha.t quoted in Ref. 9.

In computing graph (f) it is necessary to regu-
late the loop integration if gauge invariance is to
be satisfied. Pauli-Villars regulation was used
as well as the technique described by Aldins et
al. ,

"where the vacuum polarization tensor is re-
placed by

II (kkkk)- —k" ""' '' ' 4.BII
PVPa 1 2 3 4 1 ok "

1

As a check, the rate due to a heavy fermion (M)
loop was computed 2nd found to agree with the
analytic result':

11 29- 3m' m, n
M y35 9

Graph (g') has both a logarithmic singularity
and a 1/Ipl singularity at threshold. These may
be removed from%& by subtracting the quantity

dk 1 1 1
4 2gg Ms 0

(2m) k2 —A 2i+e k2+2p, k +i@ k2 —2p2 k+ie

2 ln + ' —2 3R s(p=0, k, )
e

where p, = aK+ p and p, = —',K —p. For reasons dis-
~

cussed above, the imaginary Coulomb phase is
omitted. The amplitude %g

' contributes

I ' = I'+[2 ln(X/m, ) —2](n/m)r'

to the rate. The subtracted amplitude, though
finite, is difficult to evaluate numerically because
of the branch point at threshold due to electron-
positron intermediate states. To overcome this
difficulty in the Feynman-parameter treatment,
the amplitude was evaluated at several points be-
low threshold and an extrapolation to threshold
made. When the loop momenta were integrated
directly, the problem was avoided by cutting off
the integration in the small-k region. The final
result was computed by extrapolating to zero cut-
off. Again all results agreed, the subtracted
rate being

Thus the total contribution from graph g' is

r =I'+[2 in(X/m, ) —7.90~ 0.07](o/~)r'

The numerical constant is in disagreement with
that of Ref. 3."

All gamma matrix manipulations were per-
formed by Hearn's program REDUCE. ' The inte-

grals were evaluated numerically using Monte
Carlo integration programs by Sheppey" and by
Lepage. ' The uncertainties quoted above for the
theoretical rate are the standard deviations corn-
puted by these programs.
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Electron temperature perturbations produced by internal disruptions in the center of
the Oak Ridge Tokamak (ORMAK) are followed with a multichord soft-x-ray detector ar-
ray. The space-time evolution is found to be diffusive in character, but the conduction

coefficient determined from a heat-pulse-propagation model is larger by a factor of 2.5-
15 than that implied by the measured gross energy-containment time.

A useful model for understanding the energy
transport governing the behavior of tokamak dis-
charges is a three-region plasma model. The
central-core region (y& aD, the disruption radius)
suffers internal disruptions' repeatedly as the
safety factor q drops below unity. Outside this
core region there is typically a large "middle"
region (confinement zone) where tearing modes,
plasma turbulence and/or unknown processes are
responsible for "anomalous" heat transport,
which primarily determines the energy contain-
ment of the device. Finally, there is a "plasma-
edge" region (r& ao) dominated by atomic physics
effects such as radiation, impurity ref luxing,
charge exchange, etc.

The internal disruptions inside aD manifest
themselves as sudden drops in the soft-x-ray sig-
nal level, followed by slower recoveries, giving
the characteristic sawtooth pattern evident in
Fig. 1. The standard interpretation' of the sud-
den drop is that the electron temperature is de-
creasing as heat is rapidly lost from the central
region. This process, which we will not discuss
in detail, results in a pulse of heat into the vol-
ume just outside the disruption radius, and pre-
dictably, as seen in Fig. 1, the x-ray signals
outside aD show a pulselike increase at the time
of the sudden decrease inside. By following the
propagation of these perturbations through the
critical middle region, we can, directly and for
the first time, examine the fundamental electron-
heat-transport process in tokamaks.

The soft-x-ray system on ORMAK consists of
nine silicon diffused-junction diode detectors
that view different fixed chords through the plas-
ma. ' The x-ray signal results fromplasma
bremsstrahlung and recombination processes,
both of which are strongly dependent on tempera-
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FIG. 1. Composite oscillograms of soft-x-ray signals
for two discharges. For both cases, the top trace gives
the signal from one detector over the full time of the
discharge; the rest of the signals are on an expanded
timescale starting at 45 msec, which falls in the middle
of the full-time trace. Amplification factors are differ-
ent for purposes of display. The temporal variation in
the signal (sharp fall inside, sharp rise outside) shows
that aD is = 5 cm for shot 11389 and =8 cm for shot
13477. The signals labeled B~ are poloidal magnetic
field fluctuations from pickup loops.


