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ratio of intensities does not correspond to a di-
vision according to the statistical distribution of
nearest neighbors. This led Bauminger e al.® to
the phenomenological picture of a wide 4f level
with both natural (homogeneous) and inhomogene-
ous broadening, which intersects the Fermi lev-
el and thus contributes to a pure divalent compo-
nent even at 0 K. Since a natural broad level im-
plies fast charge fluctuations (so that only an av-
erage line should be observed), we conclude that
in the case of EuRh,_, Pt, the width of the 4f lev-
el is an inhomogeneous width due to second- and
further-neighbor effects which determine wheth-
er the Eu will be divalent or trivalent.

In conclusion we point out that XPS studies of
Eu intermediate valence systems combined with
other techniques, in particular the M&ssbauer
effect, may clarify many details of the mixed-
valence phenomenon. In the case of EuRh,, a
single number [ p,(300 K)| obtained from the XPS
spectrum was sufficient to lead to the deduction
of the interconfiguration excitation energy and the
charge fluctuation time (0.6+0.1)x10™* sec,
which agrees with all theoretical expectations
and recent neutron-diffraction results.?

We would like to thank I. Felner of the Hebrew
University for supplying us with the EuRh,_ Pt
samples and D. N. E. Buchanan for very valuable
technical assistance.
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In this paper we describe the principles of a new, nondestructive method of determina-
tion of the potential distribution in delectrics. It is shown that a pressure discontinuity
propagated in a sample acts as a virtual probe sensitive to potentials. The time depen-
dence of such externally measurable parameters as voltages or charges on the electrodes
is thus a direct image of the inner potential distribution which existed in the sample be-

fore the introduction of the perturbation.

During the last few years many efforts have
been devoted to the determination of charge, po-
tential, or field distributions in condensed mat-
ter. In a plasma or in a liquid, such a determin-
ation can be easily done using moving probes. In
solids, this information, which can be highly val-
uable in the analysis of the polarization process-
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es, space-charge build up, and transport phe-
nomena, is so far obtainable in some limited
cases only: either by the combination of standard
surface-charge measurements and thermally
stimulated currents,!”® or by successive surface-
charge measurements or progressively thinned
samples®® or by spectroscopic methods.® These
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first two techniques have the disadvantage of be-
ing destructive. The latter ones are applicable
to transparent materials only. Recently Collins
has proposed” a new method based on the non-
homogeneous deformation of a sample produced
by local heating. However this method, which
requires a deconvolution technique in order to
derive the charge distribution from the measured
parameter, does not yield a unique solution.

In the present paper we describe the principle
of a new, nondestructive method of determination
of the potential distribution in a solid. We con-
sider, as shown in Fig, 1, a dielectric plate of
thickness d, area S, and infinite-frequency di-
electric constant €, with electrodes a and b in
contact with the sample, We assume that there
is in the sample a potential distribution V(z) pro-
duced by a charge density p(z) and that all vari-
ables are constant at constant z; with electrode a
grounded, and electrode b at a potential V, the
charge densities o, and 0, have been calculated®:

_d-$2)Q vV {2)Q Vv
«STTg s Car 9T 5 D
where
_Jlepz)dz Q@ _ fa
el A

It can be seen from these expressions that if V
=0 and if the sample is not piezoelectric, a uni-
form deformation along the z axis does not alter
the charges on the electrodes since (d - {z))/d is
constant, This implies that in order to obtain the

Ap,

>z

FIG. 1. Charge dielectrics between two electrodes,
divided into a compressed region of permittivity ¢’ and
an uncompressed region of permittivity €; the step-
function compression travels from right to left at the
velocity of sound.

potential or charge profiles, a nonhomogeneous
deformation must be used. For this reason we
consider a step-function compressional wave
propagated in the sample at velocity v, from
electrode b toward electrode a which is supposed
fixed, As long as the wave front has not reached
electrode a, the right part of the sample is com-
pressed while the left part is unaffected, as is
shown in Fig, 1, The charge induced on electrode
b is a function of the charge profile, of the posi-
tion of the wave front in the sample, but also of
the boundary conditions at the electrodes: open-
circuit or short-circuit conditions. In the first
case the observable parameter is the voltage, in
the second case the external current.

We call d, the unperturbed thickness of the sam-
ple, Ap the magnitude of the pressure excess in
the compressed region, x the compressibility (de-
fined as x ==V "'AV/Ap), €’ the dielectric con-
stant of the compressed part of the sample, and
z; the position of the wave front, which can be ex-
pressed as z,=d, —vt. In the compressed region,
the charges, supposed to be bound to the lattice,
are shifted towards the left by a quantity u (z, ¢)
=—xAp(z —z4), while in the uncompressed part
the charges remain at their original position.

Let z be the abscissa of a plane which is motion-
less relative to the particles of the solid: When
this plane lies in the compressed region z > z4) it
moves to the left with a velocity - xApv; if it is
in the uncompressed region it does not move.
The conservation of charge and Gauss’s law im-
ply the following relation:

d _d _J()
B?D(Z,t)—gt—D(o, t)—'—s—-, (1)

where D(z, 1) is the electrical displacement, which
is a continuous function of z throughout the sam-
ple, and J(¢) is the current flowing in the exter-
nal circuit. We can now express the boundary
conditions:

v(d, t) - V(0, ) =~ jodE(z, 1) dz, (2)

where d is the thickness of the sample at time ¢:
d=d,- xApvt. The integral on the right-hand side
of relation (2) may be split into two terms, one
related to the uncompressed part (0 <z<zf) and
the other one related to the compressed part (z,
<z <d):

fodE(z, t)dz = f:fE(z, tdz + fz;E’(z, t)dz.

It can be noted that we have kept the notations
E(z, 1) for the electric field in the uncompressed
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region and used E’(z, #) in the compressed region. - xApv. One has

These fields can be related at the interface be-

tween these two regions, that is to say at z =z, fd E'z, 1) dz = fd-sz’(d—w, 1) dw.
by €E(z;,t)=€'E'(z4, 1). Zf 0

In the first term, the only time-dependent vari-

able is z;, while in the second term z;, d, and z With this choice of variables, we can now differ-
are time dependent. However, the quantity w=d entiate relation (2) relative to time. Using rela-
-z is independant of time since electrode b and tion (1), Leibniz’s differentiation theorem, and

the continuity of the electric displacement at the
| front, one obtains

—d—[v(d, ) - V(0, t)} =vE(z,,t)[1+€—€,-<xAp— 1)}- (-Ei + 422 )M (3)

the z plane both move to the left with velocity

dt €’ S

This relation describes the evolution of the system during the propagation of the pressure wave. It
holds for any type of boundary conditions. We shall examine the solutions of this equation for two par-
ticular cases, namely the open-circuit and short-circuit conditions.

(a) Open-civcuit conditions.—We are interested in the voltage developed across electrodes a and b
when the external current is zero, Equation (3) then reduces to

d €
p [V(d, ) - V(0, t)] =vE(z4, t) [1 o XAp - 1):] . (4)
Since the charges in the uncompressed region are not altered until they are reached by the wave
front, one has
E(z,1)=E(z4,0),

Consequently relation (4) may be integrated to
v(d,t)-V(0,t)=V(d,0)~V(0,0)+v [1 +§ (xAp - 1)] fotE(zf(T), 0)dr.

Since z,(1) =d, —v7, the last integral can be written as
JIE(z,(7),0)d7=0""z,,0) - V(d, 0)]. (5)

Consequently, assuming that initially both electrodes are at the same potential and that electrode a re-
mains grounded, V(0,¢)=0. One has

V(d, 1) =[1+(e/€")xap - 1)] V(z,, 0). (6)

This expression shows that the time dependence of the potential difference across the sample during
the propagation of the compressional wave is an image of the spatial distribution of the potentials in-
side the sample prior to the perturbation. The front of the compressional wave acts as a virtual mov-
ing probe swept across the sample at the velocity of sound.

(b) Short-circuit conditions.—The potential difference across electrodes a and b is now kept constant
and equal to zero, which means that charges will flow in the external circuit. The total charge ¢(¢)
displaced after a time ¢ following the beginning of the propagation of the compression is

q(t)=fotJ(T)dT.

Equation (3) can be written as

VE (24, 1) [1 +§(xAp —1)] - (éef—+ d—_z-,—Z-L> ‘ng =0, ")

Here, because charge is transferred in the external circuit, one has
- -1t
E(z;,t)=E(z;, 0)+(e8) [ I(n)ar .

Substituting this expression in relation (7), integrating over time using Eq. (5), and supposing
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that electrode & is grounded, one has

1 e _. 1+(e/e)xap-1)
5 Jy T TGy Ve O ©

This expression shows that the time dependence
of the displaced charge in the external circuit is
also an image of the spatial distribution of the po-
tentials inside the sample.

A rough preliminary experiment® showed quali-
tatively that the method works. Shock waves®®
were used to produce a compressional step func-
tion that was propagated in a previously charged,
1-mm-thick, polyethylene plate, and measure-
ment was taken in the short-circuit current mode,
The signal observed had the shape expected for a
corona-injected charge, reversed polarity when
charges of opposite sign were injected, and was
strongly reduced when the sample was thermally
discharged.

Further, more quantitative, experiments are
underway. Two kinds of difficulties are to be ov-
ercome. First, a high-precision shock tube has
to be built in order to insure good parallelism be-
tween the sample and the wave front. Second,
taking into account the fact that for a sound veloc-
ity in the sample of the order of 2000 m/s, a spa-
tial resolution of 10 ym implies a time resolution
of 5 ns, the bandwidth of the amplifier and of the
storage unit must be broader than 200 MHz; such
systems are now commercially available.

In this paper we have presented a new principle
for the determination of the potential distribution
in dielectrics. We have shown that during the
propagation of a step-function compressional
wave in a sample, the front of the wave acts as
a moving probe, traveling at constant velocity
through the sample. The time dependences of
such externally measurable parameters as vol-
tages (in open-circuit condition) or charges (in

short-circuit conditions) are thus direct images
of the potential distribution existing in the sam-
ple before the application of the perturbation;
from this distribution any other internal param-
eter such as charge densities or fields can be
readily derived.

Publication of the paper at this early stage in
the experiments was deemed to be valuable to
those interested in applying a relatively simple,
direct, nondestructive method to determine po-
tential distributions.

The authors are greatly indebted to Professor
M. M. Perlman for his very helpful comments on
the manuscript of this paper.
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