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where 0( a &1 is the anisotropy parameter. Mod-
el 1 is the usual ferromagnet:

(with the sums taken over distinct nearest-neigh-
bor pairs). Model 2 is a more subtle version of
model 1:

Note that

where C is a trivial constant proportional to 1+
+S '. For S)&, the distinction between H, and

IJ, is interesting: In the quantum case the ground
state of H, and IJ, is doubly degenerate and has
all spins maximally oriented in the z direction.
In the classical limit (where the spins become
unit vectors and the trace is replaced by integra-

The two-dimensional anisotropic, nearest-neighbor Heisenberg model on a square lat-
tice, both quantum and classical, has been shown rigorously to have a phase transition
in the sense that the spontaneous magnetization is positive at low temperatures. This is
so for all anisotropies. An analogous result (staggered polarization) holds for the anti-
ferromagnet in the classical case; in the quantum case it holds if the anisotropy is large
enough (depending on the single-site spin).

In statistical mechanics and solid state physics, question was whether the quantum fluctuations
magnetic systems are often described by models caused by the xy part of the Hamiltonian could
of spins on a cubic lattice with nearest-neighbor destroy the ordering for small anisotropy.
quadratic interactions. Moreover, for spin 8 = &, Qle have rigorously proved that, at low temper-
these models yield idealized descriptions of hard- atures, the equilibrium states of the following
core Bose gases. A primary question is whether models have long-range order: the quantum
some of the equilibrium states of such models in mechanical, ferromagnetic Heisenberg model
the thermodynamic limit have long-range order with arbitrary anisotropy; the quantum mechani-
at low (but nonzero) temperatures, T, i.e. , wheth- cai antiferromagnet, provided S is large enough,
er there are first-order phase transitions in the depending on the anisotropy. As aby-product we
magnetic field. To date, the rigorous results for have found alternative proofs of the results of
Heisenberg-type models include the following: Ref. 6.
(i) In three or more dimensions the classical iso- We consider three different models defined by
tropic and anisotropic (ferromagnetic and antifer- the Hamiltonians
romagnetic) models have a first-order phase
transition. ' The same is true in the quantum
case, ' except that, for the antiferromagnet, the
existence of a phase transition is only known for
spin S)l. (Here, S is the spin at one site. ) (ii) In
two dimensions the Ising model (case of extreme a, '= -QS,.'S,.', II,""=-QfS,."S,."+S 'S,.')
anisotropy) has, at low temperatures, equilibri-
um states with long-range order, ' but the isotrop-
ic Heisenberg ferromagnet or antiferromagnet
(including the rotor model) does not. It has been
suggested' that the bvo-dimensional isotropic H2' = 2 Q (S,.' —S,')2,

models might have phase transitions not accom-
panied by long-range order, but this problem will
not concern us here.

It is therefore of interest to know whether the
two-dimensional anisotropic models have a first- H2 =II~+ 2 Q((S,')2+ (S,')2}+C,
order phase transition, for all anisotropies, i.e. ,
whether they behave more like the Ising model
than the isotropic models. An affirmative answer
was recently given for the classical ferromagnet-
ic and antiferromagnetic models. ' Previous work
had shown that long-range order exists at low
temperatures if the anisotropy is large (in both
the quantum" and classical' cases). The open
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tions over unit spheres") the ground state of H,
is infinitely degenerate: There is no preferred
direction. Thus, in model 2 long-range order is
a more subtle phenomenon than in model 1, and
this fact causes our estimate for T, to go to zero
as S-~, for each fixed a&1, in model 2." In
model 1, T, is bounded away from 0, uniformly
in S, for all +&1. Finally, model 3 is the usual
antiferromagnet:

H~= -H~.

To state our theorems we define (for spin S and
temperature T)

o'(S, T) =8 ' lim e;(8;8 )

to be the long-range-order parameter for the
equilibrium state (-) obtained as a thermodynam-
ic limit of Gibbs states (A)A =Z~ 'TrlA exp( H~ ~/-
kT)] with periodic boundary conditions at the
boundary of the rectangles A. In the ferromagnet
e; = 1, whereas in tbe antiferromagnet e; = (- 1)

Model 2: For each a&1 there is a T, &0 and a
function p, (T), both independent of 8, such that
o($, T) & p, (T) & 0 when T & T,. Moreover, p, (T)- 1
as T-O.

Model 2: For each n &1 there is a T,(8) &0 and
a function p, (S,T) such that v(8, T) & p, (S,T) & 0
when T &T,(8). p, (S,T)-1 as T —0, but T,($) -0
as S-~.

Model 3: For each 8 there is an n, (S), with 0
& n, ($) &1, such that, for fixed n &n, ($), there is
a function p(S, T) and a T, with the property that
o(8, T) & p (8, T) & 0 when T & T,. Moreover n, (S)

]. as 8-«), and p. (8, 0) & 3 with p, (8, 0)-1 as 8
Note that long-range order [v(S, T) &0] im-

plies that there are pure phases with spontaneous
magnetization (or staggered polarization).

There are two principal parts to our proof. As
in the Peierls argument' we want to show that the
probability of a contour y is small, i.e.,

D(y) =-(P,)

is small. Here I'& is the projection onto the sub-
space in which all spins just inside (outside) y
have negative (positive) z component. Our first
step is to relate D(y), which is a number of order
unity, to an extensive quantity. The inequality is

D(y) ( lim (P) I&I

At g2

where I yl is the length of y and N is the number
of sites in A. I' is the projection onto the sub-
space of states in which every spin has either a
positive or negative z component, and, in cases

1 and 2, the first two rows of spins must have
positive z component, the next two rows have neg-
ative z component and so on, alternately. In case
3 the signs are reversed on one of the two sub-
lattices.

The second step is to show that

D-=iim (P),""
Atz2

is small when T is small. We write

(P) =Z (p;,Pp, ) exp(- ~;/kT)/Z

Z~ =Q, exp( e,/-kT),

where y, and e, are the eigenvectors and eigen-
values of H . If e, is the ground-state energy,
the terms in the numerator in which e, &e,+eN,
for ~& 0, are easy to dispose of, because they
have a small Boltzmann factor, i.e., they give
a small contribution for energetic reasons. The
terms with e; close to e, present a difficulty.
Classically they vanish, but in the quantum case
one needs an estimate showing that states of low
energy have small projections onto states which
have a large H' energy. This cannot be inferred
by energetic considerations alone. We have
proved a theorem which we call "exponential lo-
calization of eigenvectors. " In the case at hand
it says roughly that when e, & e,+ eN then (y;,Pp, )
~ a", where a &1 and d is the number of times H""

must be applied to a state specified by I' such
that the resulting state has II' energy less than e,
+yN, with y small. Using this, it is possible to
show that D- 0 as T —0.

To summarize our results, we have established
that quantum fluctuations are unimportant for the
anisotropic ferromagnet and hence that some kind
of spin-wave theory may be applicable. In the
antiferromagnetic case, quantum fluctuations are
unimportant if S is large enough (depending on n),
but the situation for small S has not been decided
rigorously.
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The E x-ray emission spectrum of Li has been measured with 0.1-eV resolution for
temperatures between 85 and 490 K. A prominent shoulder is observed on the emission
edge that is strongly broadened and shifted in energy as the temperature is raised. The
peak in the emission spectrum lies about 0.6 eV below this shoulder. The steep high-en-
ergy edge of the spectrum is interpreted as a Fermi edge centered at 54.8 eV and having
a width of 0.2 eV. The results are compared with similar structure observed in the ab-
sorption spectrum of Li.

The interpretation of the K x-ray edge of Li has
long been a source of controversy. Both the soft
x-ray emission (SXE)' ' and soft x-ray absorp-
tion (SXA)' ' edges have been measured by sev-
eral workers. In emission data, there has been
conflicting evidence as to whether the true emis-
sion spectra shows a steep high-energy edge with
a peak at lower energies'~' or a gradual fall
over about 0.8 eV from the peak of the emission
spectrum. ""It has been suggested that the
steep edge is an experimental artifact which re-
sults from self-absorption. " This implies that
the entire region above the peak in energy may be
a very broad emission edge. On this assumption
several theoretical attempts have been made to
account for this very broad edge in terms of
many-body effects" "and lattice vibrations, ""
but the calculations have usually shown that the
processes considered give much smaller edge
broadening.

Considerable light was thrown on the I i edge
problem recently by the measurements of Peter-
sen and co-workers'"' who measured the SXA
edge at temperatures from 4 K to above the melt-
ing point of Li (&450 K) with good resolution (0.11
eV). At low temperatures they find a clear shoul-
der in the absorption edge. "' They interpret the
steeply rising region below the shoulder as the
true Fermi edge. Their temperature studies in-
dicate that the broadening (- 0.2 eV at 80 K) of

this edge is due predominantly to processes in-
volving lattice vibrations. "' A similar conclu-
sion was reached by Baer, Citrin, and Wertheim"
in their analysis of x-ray photoemission results.
Following a suggestion by McAlister" which was
based on an augmented-plane-wave (APW) band
structure calculation, Petersen and Kunz attrib-
ute the peak above the shoulder to a peak in the
one electron transition density located about 0.5
eV above the Fermi edge.

We have performed complementary experi-
ments to those of Petersen and Kunz, measuring
the soft x-ray emission spectra of I i with a res-
olution of 0.1 eV at a number of temperatures be-
tween 85 and 490 K. Our results are nearly a
mirror image of theirs. A shoulder is present on
the SXE edge at low temperatures that is broad-
ened and shifted in energy by phonon processes
as the temperature is raised. A peak is found
about 0.7 eV below the Fermi edge. Our results
show that the steep high-energy edge is not an
artifact due to self-absorption, but represents
the true Fermi edge. They also demonstrate that
many of the differences in previous data can be
attributed to differences in the temperature of
the emitting cathode; the sharp edge observed at
low temperatures"' is washed out at higher tem-
peratures. The results are important because
they should serve to concentrate theoretical in-
terest on the origin of the peak in the emission
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