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peak.
In summary, four major conclusions are re-

ported in this Letter. (1) In conjunction with a
theoretical calculation of the k~~-resolved SLDS,
the edge proximity effects, which result from the
dispersion of the resonances, have provided ex-
perimental evidence for the band-structure ef-
fects in FEED."'" (2) The present theoretical
model calculation of the k~~-resolved SLDS has
been shown to be successful in explaining the ob-
servations in both FEED and angle-resolved PED.
(3) This FEED study on Mo(100) confirms the ex-
istence of surface resonances and also reveals
their dispersive characteristics. Published re-
sults for angle-resolved PED from Mo(100)" do
not definitely demonstrate the existence of a sur-
face resonance peak. " (4) The present calcula-
tion shows that the resonance on (100) surfaces of
Mo and W are mainly made up of d,„,d„2,2, and
s orbitals. Each resonance is located in a hybrid-
ization gap which, when traced back to the bulk
band structure at k~~ =0, is found to be related to
the crossover of &, and &, bands.
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We comment on the feasibility of a recent suggestion by Carneiro that the Kohn anomaly
in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) occurs in the C-H stretch
molecular modes.

In a recent Letter discussing the inelastic-neu-
tron-scattering studies" of tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ), Carneiro'
has made the interesting point that the inelastic-
neutron-scattering intensities from protonated

TTF-TCNQ and deuterated TTF-TCNQ (D) can
be quite different for particular molecular-vibra-
tional modes. His suggestion that the Kohn anom-
aly and related Peierls distortion in TTF-TCNQ
arises specificaLly from the coupling of the con-
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duction electrons to C-H or C-D molecular-vibra-
tional modes should not, however, be considered
without cognizance of some recent results per-
taining to the role of electron-molecular-vibra-
tion coupling in this type of organic conductor.

Molecular-orbital (MO) and valence-force-field
calculations of the linear coupling constants de-
scribing the interaction of the relevant conduction
electron MO's with the totally symmetric (a )
molecular vibrations of the TCNQ' and TTF
molecules show that there is almost negligible
coupling to the C-H (or C-D) stretch modes. The
results of these calculations are summarized in
Table I for the protonated molecules. This con-
clusion has been reached earlier' for the TCNQ
molecule on the basis of the elementary observa-
tion that the C-H (or C-D) stretch mode involves
atomic displacements in regions of the molecule
where the amplitude of the relevant MO [b,&(w*)]
is very small. In either molecule, the MO's
couple linearly only to the totally symmetric (a )

vibrational modes; there are ten a modes for
the TCNQ molecule' and seven for the TTF mole-
cule. The linear electron-molecular -vibration
coupling constants g„are defined such that in the
formalism of second quantization the Hamiltonian
specifying the electron-molecular -vibration in-

teraction is"'
H = C"CQ „g„h~„(b„+h „),

where b„~ is the creation operator for the nth vi-
bration quantum mode of frequency co„and C'~ is
the electron creation operator for the MO. The
quantity F~= h+„g„'~„, which is the "small-po-
laron" binding energy, serves as a relative meas-
ure of the total electron-molecular-vibration
coupling strength; the respective values of E~
for the TCNQ and TTF molecules are included in

Table I.
It is evident from Table I that the conduction

electrons in TTF-TCNQ are significantly coupled
to a relatively large number of intramolecular vi-
brational modes. As discussed in some detail by
Rice, Duke, and Lipari, this implies that the
subsequent soft phonon forming the Kohn anomaly
will consist of a strong mixing of all of these
modes —.ogether with any other modes, e.g. ,
acoustic phonon modes, which happen to couple
to the underlying conduction-electron MO. Con-
sequently, it is not possible to associate the soft
phonon and the subsequent Peierls distortion with

a single originally uncoupled phonon or vibration-
al mode. It is this interesting complication of
multicouplings that distinquishes TTF-TCNQ

TABLE I: Calculated linear electron-molecular-vibration coupling constants for
the lowest empty molecular orbital [52 (sr*)] of TCNQ and the highest occupied molec-

2g
ular orbital [Qlg(7|.)] of TTF.

TCNQ TTF

a frequency'

(cm )

3048

2229

1602

1454

948

711

Domanant'

character

C-H stretch

C=-N stretch

C=C ring stretch
C-H- bend

C=C wing stretch

C-H bend
C=C ring stretch

C-C ring stretch

C-C ring stretch

Coupl i ng

constant

0.01

0.19

0.66

0.27

0.19

0.25

0.37

a frequencyb
g

(cm )

3099

1559

1518

1077

740

472

253

Dominantb

character

C-H stretch

C-C stretch center
C-C stretch ring

C-C stretch center
C-C stretch ring

S-C-H bend

S-C stretch

C-S stretch
C-S-C bend

S-C-S bend
C-S-C bend

Coupling
constant

0.03

0.23

0.62

0.16

0.49

1.33

0.16

602 C(CN)2 scissor
C-C wing deformation

0.03 Corresponding small polaron binding energies

E =F) z g„e„.
n

334 ring deformation

C-C=-N bending

0, 58

0.49

TCNQ

0.15 eV

TTF

0.21 eV

After Girlando and Pecile, Ref. 7.
After Bozio et gl. , Ref. 8.
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from Kp[Pt(CN)4]Br». 3.2H, O (KCP). 'P

Direct experimental information on both the
existence and magnitudes of electron-phonon or
electron-vibrational couplings in organic linear
chain conductors can be obtained because in the
Peierls condensed state, or, more generally, in
a band semiconducting state, the phonon modes
which are coupled to the conduction electrons de-
velop, as a consequence of their coupling, an
anomalous infrared activity along the chain direc-
tion. " A recent analysis" of this effect in tri-
ethyl ammonium-(TCNQ)„ for which excellent po-
larized optical reflectance data exist, "has veri-
fied that the TCNQ conduction electrons signifi-
cantly couple to all of the symmetric TCNQ vibra-
tional modes excepting the C-H stretch mode.
Moreover, the experimental values which were de-
duced" for the respective coupling constants are
in good semiquantitative agreement with the theo-
retical values tabulated in Table I. Similar con-
clusions may also be drawn from a recent polar-
ized reflectance study of K-TCNQ. " The present-
ly available infrared data" on TTF-TCNQ show
no evidence of any appreciable electronic coup-
ling to either the TCNQ or TTF C-H stretch
molecular modes, although there is clear evi-
dence for electronic coupling to the 1602-cm '
TCNQ a mode, for which, interestingly, Table
I indicates strong coupling.

We do not discount Carneiro's suggestion that
important differences in inelastic-neutron-scat-
tering intensities for protonated and deuterated
TTF-TCNQ may arise for particular TTF and
TCNQ molecular modes. It is possible that ap-
plication of his arguments to the particular linear
combination of molecular modes theoretically ex-
pected' to participate in the Kohn anomaly may
explain the differences in the observed" neutron-
scattering intensities. Indeed, the majority of
the TCNQ and TTF modes collected in Table I
will involve some degree of protonic motion.
This feature is not reflected by the dominant
character specifications given in Table I since
the latter, by convention, are based on the poten-
tial energies of deformation. Only in the three
lowest-frequency TCNQ a modes and in the
TCNQ C =—N stretch mode is protonic motion ab-
sent. His suggestion that the Kohn anomaly in
TTF-TCNQ is associated sPecifically with the
C-H (or C-D) molecular mode does not, however,
seem feasible in view of the considerations that
we have outlined above.
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