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A calculation is presented of the total energy of metallic hydrogen for a family of face-
centered tetragonal lattices carried out within the self-consistent phonon approximation.
The energy of proton motion is large and proper inclusion of proton dynamics alters the
structural dependence of the total energy, causing isotropic lattices to become favored.
For the dynamic lattice the structural dependence of terms of third and higher order in
the electron-proton interaction is greatly reduced from static lattice equivalents.

Perturbation theory has been moderately suc-
cessful in accounting for the structural depen-
dence of the static energy in many simple crystal-
line metals.»? In this method, the structural en-
ergy is obtained by expansion in orders of the ef-
fective conduction-electron-ion interaction (or
pseudopotential), the expansion usually being
truncated at the lowest term and resulting in what
is referred to as the second-order band-struc-
ture energy. For perfect lattices, this term re-
duces to a relatively simple sum over the sites
of the reciprocal lattice.

In the case of metallic hydrogen, the electron-
ion (electron-proton or electron-deuteron) inter -
action is exactly known, and it is partly for this
reason that this system has attracted theoretical
attention.®” Within the static-lattice approxima-
tion, perturbation theory for the structural ener-
" gy has been carried through to fourth order,” and
extensive scans of “Bravais lattice space” have
been carried out in an attempt to determine, at
zero pressure, the structures with lowest static
energy.® In the latter calculations (which were
at third order), Brovman ef al.® concluded that
static metallic hydrogen would take up structures
which are so highly anisotropic that near the zero-
pressure metastable density they would become
“liquidlike” in certain crystal directions upon in-
clusion of the proton dynamics.

Since the ionic mass in metallic hydrogen is

small, one expects on quite general grounds that
the ionic degrees of freedom can play a rather
significant role in determining the structure with
lowest overall energy. It is known®’ that energy
differences between different structures are
small—much smaller, for example, than the esti-
mate of the energy bound up in the zero-point mo-
tion of the protons. Evidently, what is required
is a calculation of structural energies carried
out self-consistently for various lattices dis-
turbed by the presence of phonons. The purpose
of this Letter is to report on the outcome of such
an investigation: We have completed a series of
calculations within the self-consistent harmonic
phonon approximation®® (SCHA) for a representa-
tive family of face-centered tetragonal (fct) Brav-
ais lattices in their ground states at a density?®®
of 7,=1.36 [ with 27(r a,)*=n"", n being the elec-
tron density N/Q]. Two important results emerge:
First, the inclusion of ion dynamics radically al-
ters the structural dependence of the energy so
that, in the family which we consider, it is the
isotropic lattice (fcc) that is ultimately favored.
Second, by the inclusion of ion dynamics in the
perturbation theory, the structural sensitivity of
the terms higher than second order is greatly re-
duced from that appropriate to the static theory.
The arguments go as follows: To second order
in the electron-proton interaction, the total
ground-state energy per proton in the self-con-
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sistent harmonic approximation can be written'!

E(rg )— Z} rw(d,7) + Z} & (X) + (terms independent of structure). 1)

Here the sum of frequencies w(d, j) of polarization j is taken over the first Brillouin zone (BZ), and

kag(k) exp[—3k.k s X s(X) lexp(ik- X), (2)
where
- —- — - - BZ = - > . -172>
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with the brackets indicating an average over harmonic states. In Eq. (2), e(%) is the dielectric function
of the interacting electron gas taken, as is customary, in its static limit. The small ionic displace-
ments (X) are defined by #(X)=R - X, where R is the instantaneous position of the ion, and X the lat-
tice site to which it is attached. Notice that the first term in (1) is the kinetic energy of the ionic sys-
tem whereas the second is the potential energy averaged over the ions, motion. To carry out this aver-
aging, we require both the frequencies w(d,s) and the polarization vectors &(d,j) of the self-consistent
phonons; and these are given by the solution of

dk 47

sz(q,j>ea<a,j)={ 2 (cosg-X ~1) <) ks expl- vx,w(i)]exp(iﬁ-i)} @) (@)

X=0 (2‘")

Evidently, the static energy can be formally re- f

covered by setting x =0 in Egs. (1)-(3), and by
omitting the phonon kinetic energy in Eq. (1). The
harmonic approximation, on the other hand, can
be obtained by expanding in powers of x and re-
taining the terms linear in A. In metallic hydro-
gen however, the root-mean-square proton dis-
placement is substantial,’? and such an expansion
(implicit in Ref. 3) is open to question. The sec-
ond-order static energies'®!* (to which, in the
harmonic approximation, the phonon energies are
simply added) are shown in Fig, 1, plotted against
¢/a for the fct system (solid line). Note that
there is noticeable structure in the curve not
found, for example, in an ordinary simple metal
(e.g.,'® Al). In agreement with Ref. 3, we find a
structure with ¢ /a <1 to have the lowest static en-
ergy. However, when we compute the dynamic
energy self-consistently, the situation changes
markedly. It is important to note that the solu-
tions of (4) do not always admit »eal frequencies:
The arrows in Fig. 1 indicate three such lattices;
the dashed line gives the total energy'®'” [Eq. (1)]
for the ¢/a values for which Eq. (4) can be solved.
The reason for the apparent failure of the SCHA
is simply that, for certain values of the parame-
ter ¢/a, the small-oscillations problem is not
well defined. For example, lattices correspond-
ing to ¢ /a values lying in the range 0.5 <¢/a <0.7
are associated with a portion of the static-energy
curve (Fig. 1) that is removed from a local mini-
mum and for which the second derivative (with
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respect to ¢/a) is negative. In these lattices, the
existence of stable small oscillations of the pro-
tons cannot be presumed, and the occurrence of
imaginary frequencies in the SCHA is an indica-

tion that they do not. For values of ¢/a near 1.5,
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FIG. 1. Static energy and total self-consistent energy
for fct metallic hydrogen (at #,=1.36 and T=0°K) as a
function of ¢/a (all energies are in hartree atomic
units). Total (right-hand scale) is given by the dashed
line. Arrows refer to particular values of ¢/a for
which the crystal is unstable.
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the absence of stable oscillations is already sug-
gested by the results of the harmonic approxima-
tion, for which imaginary frequencies are found
everywhere in the BZ. Although there is a mini-
mum in the static energy near ¢/a=1.5 (Fig. 1),
the SCHA can still fail because in the wider Brav-
ais lattice space referred to earlier this point
can be situated at a saddle on the energy surface,
in contrast to the regions corresponding to the
dashed curves which evidently reflect local mini-
ma (as required for stability).

The total energy is minimized at ¢/a=1 corre-
sponding to the fcc structure, which is the most
symmetric of the class considered. Since the
sharp variations of static-lattice energy found in
Fig. 1 and in the plots of Ref. 3 occur over values
of ¢ /a comparable to the ratio of {(i*}'/2to a
nearest-neighbor distance, it is not unreasonable
to expect similar behavior for other families of
Bravais lattices such as those investigated by
Brovman, Kagan, and Kholas,® Evidently, we
may conclude that in the metallic phase of hydro-
gen, lattice dynamical effects completely alter
the structural dependence of the energy: Ina
self-consistent calculation, it is isotropic lattic-
es that are favored. (Indeed, it is worth noting
that none of the structures corresponding to the
minima of the static energy in Fig. 1 is stable in
the simple-harmonic approximation.) Finally,
the energy of motion, defined by E —E ., is'®
0.0076 hartree units per proton for the fcc struc-
ture. This is a substantial fraction of the zero-
pressure binding energy®’ which, depending on
estimates of electron-gas correlation energy, is
in the range 0.02 to 0.03 hartrees per proton.

We now come to the structural dependence of
terms in the energy of third and higher order in
the electron-ion interaction, which have been
omitted from (1), In the SCHA the fotal second-
order band-structure energy can be written

[e(lk) _1] ’ (5)

17

E,®= — Z} S(IE)

k=0

where the static structure factor S(k) is given by

S(K) = Z)Y)eii’fexp[ ~ 3k ko s(X)]. (6)

This function is plotted in Fig. 2 for fcc metallic
hydrogen (r,=1.36) with K along the [100] direc-
tion. The large weight between peaks (and the
correspondingly sharp reduction in the strength
of the Bragg peaks themselves) can be traced
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FIG. 2. Structure factor S(K) for fcc metallic hydro-
gen (at », =1.36 and T = 0°K) for K along [100]. The fre-
quencies and polarization vectors used to compute S(k)
are the solutions of the self-consistent equations.

to the value of the Debye-Waller factor e 2¥ where

2W = <ﬁ2>— ﬁ__ Zea(qy

MN 2 % eﬂ(qyj)w-!(q,j) (7)

is appreciable.'? This transfer of weight from
the Bragg peaks to the continuum in between
means that the dynamic second-order energy is
less sensitive to structure than the correspond-
ing static lattice quantity. Now, in third and high-
er orders this effect is compounded: It is easy
to show'®!® that the dynamic third-order band-
structure energy has three Debye-Waller factors,
the fourth has six such factors, and so on. The
extent to which the dynamics 7educes the struc-
tural sensitivity is more marked at each succes-
sively higher order. Thus, for purposes of cal-
culating the s#ructural dependence of the energy,
perturbation theory converges more quickly in
the dynamic case than in the static counterpart.
Perturbation theory does not, of course, say
whether the assumption of a crystalline ground
state for metallic hydrogen is valid. However
within such an assumption, it offers a means for
deciding on the preferred lattice; and in this con-
text the calculations described above appear to be
the first for a metal that go beyond the harmonic
approximation.
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We find that the inclusion of the pseudo~three-body forces between all neighbors does
not remove the difficulty of obtaining a consistent analysis of the microwave spectrum
of solid hydrogen observed by Hardy and Berlinsky. We propose a novel anisotropic in-
teraction, due to the deviation from axial symmetry of the pair distribution function of
neighboring molecules, leading to a satisfactory interpretation, and yielding new infor-

mation about lattice dynamics.

The intermolecular interactions and the rota-
tional and lattice-vibrational motions of the mol-
ecules in solid hydrogen have been studied ex-
tensively in recent years; and attempts at com-
prehensive theoretical treatments have also been
published.’™® An important advance in our knowl-
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edge in this field is the recent observation by
Hardy and Berlinsky* of the microwave spectrum
of bound pairs of ortho molecules in a parahydro-
gen crystal, These authors interpreted this spec-
trum on the basis of previous theoretical work of
Harris,® but they came to the conclusion that the



