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dent than the production rate for D mesons which
has a peak near 4.03 GeV. They can be misidenti-
fied as heavy leptons.

The weak current obtained from (3) and (5) will
cause the decay of the blue quarks to baryons.
For instance, the decays u'-™'p',u'-='e'v„
and —less frequently=-~'- Az' are predicted.

Beside the Cabibbo rotation of the quark fields
in the weak current, further mixing effects are
possible. In particular, a small mixing of v~'
with u~' and of v~" with s~'c appears likely (in
the convention used here, v', e and v", p, carry
lepton number -1):
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If such a mixing occurs, the charged weak cur-
rent obtained from (3) and (5) will also be respon-
sible for the decays of red and white quarks: s'
-v&e v', s' v"p.'v", s -p, '+ hadrons, d'-v'
+hadrons, d'-e +hadrons, etc. These decays
are similar to the ones expected for heavy lep-
tons but with different transition rates and ha-
dron multiplicities. The same mechanism will
then also cause the decays of those diquark
states which are simultaneously baryons and lep-
tons leading, for example, to the unusual - p. fi-
nal states. The values of the mixing parameters
e are restricted. An upper limit may be obtained
by considering the process K'-g'v, v„which is
of order e~. With the experimental number'
R(E'- p'2 v) (0.6 &10 ' one finds e «0.05."

The existence of quarks and diquarks would
lead to remarkable effects. Perhaps it is worth-
while to look for them, if for no other reason
than to be sure that they are not there.

It is a pleasure to thank M. Bade, N. Marinescu,

and O. Nachtmann for useful discussions.
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"Such small values of the mixing parameters e could

give quark lifetimes too long to be compatible with ex-
periment. However, matrix elements of operators
]ike (p dpi)(dp'g) —(v e )(e u) have a good chance to
be considerably enhanced by a mechanism similar to
octet dominance. An alternative possibility for the de-
cay of red and white quarks is obtained by adding new
doublets to the weak current, for instance the right-
handed doublet (u', e )~.
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Lipatov's estimates for large orders of perturbation theory are extended to scalar
electrodynamics.

Lipatov has recently obtained estimates for large orders of the renormalized perturbation series in
scalar field theories using semiclassical methods. ' ' He has beautifully extended the pioneering work
done on the quantum-mechanical harmonic oscillator by Bender and Wu and by Loeffel et al.' We pres-
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ent similar results pertaining to scalar electrodynamics.
One-particle irreducible Euclidean Green's functions behave as

r„=&„I"„"'(e-'/4m)", r„&"&=k!A'k"c„[1+O(1/k)],

where k is the order of perturbation, and the constant A is estimated as

A = 0.0808.

The real numbers b„and c„depend on the process described by l"„. This implies that the series may
be resummed by use of a Borel transformation:

1 „(e'/4w) = fo due "I'„(e u/4m), I'„(u)-g,(-uA)"k'"c„, (8)

where I'„(u) is analytic inside a circle of radius A with a power-type singularity on the negative real
axis, controlled by the exponent b„. The extension of these estimates to the case of fermionic charged
fields will be the subject of a future publication.

The generating functional G(j) of connected Green's functions is represented in Euclidean space-time
as a path integral:

expG(j) = fD(q) exp[-A, (q) -A, (y) —fdxj P), (4)

Under the assumption that A, (y) is a positive functional, C~(j) is dominated for large k by the contribu-
tion of those y's for which A, (y) is maximal given A, (p). In the typical case of renormalizable scalar
massless field theory with

A(po)=f d&~(8V') Ai(V')=fd &(0 ) (8)

where N =d/(d —2), one has the Sobolev bound'

[A,(q)]""-(8/d(d -2)]S -"A (q»

with S, = 2w " '[I'(—,(4+1))] ', the area of the unit sphere in 0+1 dimensions. In other words, the
Sobolev bound controls the growth of the interaction part of the action in terms of the free one. In the
special case of a massless field, the bound is reached for the set of conformal transformed functions

—(~-2)12

(8)

where A, and A, , denote the free and interacting parts of the action. For the time being we ignore the ef-
fect of renormalization which can be accounted for by using the methods of Hefs. 1 and 2.

In the simplest case, A, (y) is proportional to a coupling constant g. We rewrite it as gA, (y) and ex-
pand its exponential in powers of g, thus obtaining the 0th order of perturbation theory as

expG(j) =(-g)"C,(j), C.(j) = fD(V) exp[-A. (e) —f«jV](k') '[A, (W)]". (5)

If we add a mass term to A» a strict inequality sign would hold in (7), and one could only ascertain the
existence of a sequence (without limit) of functions approaching the bound as closely as one wants

From (7) we deduce that the appropriate Borel transform

Q(-b")"C (j) '
t

= Q fD(cp)exp[-A, (q) e""'/"bA,—""—fdxjy]

converges in a circle Ibl &-', d(d —2)S~' ' with a singularity coming from the vicinity of the functions
given in (8). This yields for the positive C~(j) the estimate

(Nk)! 8
d(d 2)' " (10)

up to yet unknown powers of k. To proceed further, one notices that the saturation of the Sobolev bound
implies a variational problem which coincides with a variation of the original action A, + gA, for a neg-
ative effective couPling constant

g 1 d2S 2/4[A (y)] 2/0
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Therefore, one can understand the use of the steepest-descent method in Refs. 1 and 2 to compute, in
either form, the original functional integral

C~(j) =—
t fD(p) exp[-A, (p) -k lnA, —fdxjy] = fD(y) . exp[-A, (y) -gA, (y) -kin(-g) —fdx jy],

1 dg

(12)

both leading to the same equation, up to a scale on p, as the saturation of the Sobolev bound.

This method enables one to compute the next terms in (10) by integration over the fluctuations around

the classical solution (8). Care has to be taken of translation and dilatation invariance, using collec-
tive coordinates. It is of course necessary to reintroduce the renormalization counterterms in the

original action, ~d one is led to a new perturbation theory to extract the full asymptotic series in k,
up to standard calculational difficulties. It should be noticed that the very divergent character of the
initiQ perturbation series allows one to obtain rather easily estimates of one-particle irreducible
Green's functions. We refer to the original works for an appreciation of how surprisingly accurate
these estimates are and how they allow an improved numerical treatment of perturbation theory.

Although the Sobolev inequalities offer a compact mathematical means to understand the structure of
Lipatov's result, physical insight is increased by realizing that one has naturally been led to wander in

the coupling-constant complex plane, until one has reached a point of vacuum instability. This point of
view is in agreement with an early argument of Dyson, ' who pointed out that perturbation theory is pre-
sumably only asymptotic, and also with Langer's' calculation of the exponentially small vacuum decay
probability for small negative coupling constant.

To implement the above program for QED we face new difficulties. Either the potential A& is coupled
to a Fermi field and we have to treat statistics correctly, or it is coupled to a scalar complex field y
and the coupling constant appears both linearly and quadratically in the interaction, which does not a
priori possess positivity properties. Furthermore, gauge freedom complicates the task. In any case,
we might expect cancellations among sets of gauge-invariant diagrams. We choose to discuss the
scalar case and omit mass terms and four-scalar particle coupling at first. Therefore, we write in
Euclidean variables and with a gauge-fixing term

expo(Z„, j)= JD(A, y, y*) exp[ —fd'x[ ,'E'+ —,'x(a A-)'+(a+ieA)y+ (a —ieA)y+j y*+j *p+Z A]j

=5~ e" fD(A, rp, y*) exp( —Jd'x[ ,I'+ —,'x(a A)'+e—@*ey+jy*+j +y+g A]}

X ( fd'xA'y(p')"" fd'x (1/i)q *Fy.A &t

( fd4xA2+g+)112
=- II

Call C~ the coefficient of e . The Hermite polynomials are of course not positive definite. However,
the inequalities,

(fd'x A'y*y) ((3/16m') fd'xe yey*f d'x ,'g„(aA-„)',

[fd x(1/i)~By*.A], („,

(14a)

(14b)

)H„(x)( (2" ~" [n!/E(n/2)!]exp{2~x~[E(n/2)]" ) (1.4c)

enable one to show that a constant A exists, such that

) C,I,(Jj ) I

—
I c»„(z,j) I —[(2k)'/k']A".

To obtain the best value of A and the oscillation in sign which allows the series to be asymptotic for e'
&0, we can proceed as in the scalar case. We try to find solutions for the classical equations of mo-
tion, with a finite action. In order to investigate the possibility of a saddle point involving real fields
we have to set iy By=0, i.e., cp real, and try to fulfill the following constraints, obtained when using
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the analog of (12):

(8' —e'A')y = 0,

(BA+As) y = 0,

—O'A „+(1 - A )8 „8 A + 2e'A „y' = 0,

k+ e' fd xA'y'= 0.

Clearly the saddle-point value e' is negative, and we propose the following Anzac:

(- e ')'"A =I x"-'a(x')

( e 2)1/2~ (2/x2)1/Rf ( 2)

—e, = (27/ /'k) f dx x 2a f,
with M„, a nonsingular 4 &4 antisymmetric matrix such that

(15a)

(15b)

(15c)

(15d)

(16a)

(16b)

(16c)

The above parametrization ensures that

BA=0, x.A=0, (18)

in such a way that the gauge-fixing parameter X will disappear from the solution and (15b) will be auto-
matically fulfilled, By use of t= ln)(,' as a variable, the original action takes the form

fd4x[4F'+g —,'(8 A)'+(8+teA)y" (8 —te)y]= [27('/(-e, ')]fdt((d'+a')+4f™+f —a'f'}, (19)

with

a=a(1 f ), f= —'—f(1 —a ),

corresponding to (15a) and (15c). The solution is re(luired to make the integrals

I= f dta2f~= f dt(d +a )= f' dt(4f I+f )

(20)

(21)

well defined. We have looked for a numerical solution of (20) using the observation that one can search
for symmetric functions with respect to an arbitrary origin in t chosen to be zero. We follow the tra-

FIG. 1. Trajectories of zero energy in the &,f plane. Curves a, 6, c, d, and e correspond to different values of
a(0) =1.300, 1.600, 1.6165, 1.620, and 1.732.
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jectories leaving with zero velocity the zero-potential curve at I, =0, as they proceed down the deep val-
leys except for the unique solution (up to reflections in a and f) which slowly reaches the point a = f= 0
along the curve a=f'. Figure 1 displays this behavior. We have checked that the virial theorem (21) is
satisfied to a great accuracy leading to the value

I= 7.874. (22)

We have of course to presume that our Ansatz has picked the nearest singularity of the Borel trans-
form. If this is the case we see that in spite of the new intricacies implied by the gauge field, we have
recovered the same situation as in the case of a self-coupled scalar field. After some manipulations
we obtain formula (1) with A expressed as

A = (2/mI) (23)

giving the numerical value quoted in (2).
The normalization factors (b„and c„, the latter containing all the dependence on external momenta

and polarization) can be extracted from the above numerical solution and will involve the renorma, liza-
tion counterterms.
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A sensitive frequency-shift technique is employed to monitor the magnetic quantum
state of a single electron stored in a compensated Penning trap. The electron sees a
weak parabolic magnetic pseudopotential in addition to the electric well, which causes
the axial oscillation frequency to have a slight magnetic quantum state dependence. Tran-
sitions at both the spin-cyclotron-beat (anomaly) frequency and the cyclotron frequency
have been measured in the same environment to yield a magnetic anomaly a = {1159652
410+ 200) && 10

The first measurement of the electron-spin
magnetic moment on free (relativistic) electrons
was carried out in 1953 by Crane and co-workers'
giving la, l ~5&& 10 ' for the "anomaly" defined as
a, -=(v, —v, )/v, . Here, v, a.nd v, denote spin a,nd

cyclotron frequencies, respectively, in the non-

relativistic limit. This study led to the famous
University of Michigan "g —2" experiments, ' fi-
nally yielding a, =(1159656700+ 3500) &&10 "
which was previously the most accurate experi-
mental value. However, the first definite value, '
a, =(1116+40)&&10 ', was obtained in 1958 at the
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