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The implications of the weak equivalence principles are investigated in detail for elec-
tromagnetic systems in a general framework. In particular, I show that the universality
of free-fall trajectories (Galileo weak equivalence principle (WEP[lj)] does not imply
the validity of the Einstein equivalence principle (EEP). However, WEP[I] plus the uni-
versality of free-fall rotation states (WEPtII]) does imply EEP. To test %'EP[II] and
EEP, I suggest that Eotvos-type experiments on polarized bodies be performed.

The Einstein equivalence principle (EEP), i.e.,
the minimal coupling principle, is the cornerstone
of the gravitational coupling of matter and non-
gravitational fields in general relativity and met-
ric theories of gravity. For such an important
principle, it is crucial that its empirical founda-
tions be analyzed in depth.

Empirical evidence supporting EEP comes from
Eotvos experiments' ' and gravitational-redshift
experiments. " Eotvos experiments provide di-
rect tests of Galileo weak equivalence principle
(WEP[I]). Braginsky and Panov' demonstrated
that the accelerations of an aluminum test body
and a platinum test body, placed in the sun' s
gravitational field at the location of Earth, agree
to l part in 10". Redshift experiments provide
tests of EEP. Pound, Rebka, and Snider" dem-
onstrated that, to I%%uo accuracy, the gravitational
redshifts of photons are metric (i.e., those pre-
dicted by EEP). These experiments show that the
local Lorentz frames determined by test bodies
and by photons agree to 1% accuracy.

In 1960, Schiff' argued as follows: "The Eotvos
experiments show with considerable accuracy
that the gravitational and inertial masses of nor-
mal matter are equal. This means that the
ground-state eigenvalue of the Hamiltonian for

this matter appears equally in the inertial mass
and in the interaction of this mass with a gravita-
tional field. It would be quite remarkable if this
could occur without the entire Hamiltonian being
involved in the same way, in which case a clock
composed of atoms whose motions are deter-
mined by this Hamiltonian would have its rate af-
fected in the expected manner by a gravitational
field. " He suggested that EEP and, hence, the
metric gravitational redshift are consequences
of WEP[I]. If this conjecture holds, then since
Eotvos experiments verify WEP[I] to high preci-
sion, EEP is also verified to high precision.
Therefore, the scope of validity of Schiff's con-
jecture has a direct bearing on the armlysis of the
empirica1 foundations of EEP.

Recently, as experimental tests of relativistic
gravity have improved, interest in Schiff's con-
jecture has revived. Thorne, Lee, and Light-
man' have analyzed in detail the fundamental con-
cepts and terms involved and have given a plausi-
bility argument supporting Schiff's conjecture.
Lightman and Lee' have proven Schiff's conjec-
ture for electromagnetically interacting systems
i.n a static, spherically symmetric gravitational
field using a particular mathematical formalism
known as the T-II-c-p. formalism.
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In this Letter, I use a general framework (in
which the T-H-e )i f-ormalism is a special case)
of gravitational coupling of electromagnetism to
study the scope of validity of Schiff's conjecture.
I find that although the universality of.free-fall
trajectories (WEP[I]) constrains the gravitational
coupling severely, it does not imply the validity
of the EEP. In the counterexample (to Schiff's
conjecture) which obeys WEP[I] but violates EEP,
there is an anomalous torque on a polarized test
body so that the test body will change its rotation
state. Since the motion of a macroscopic test
body is determined not only by its trajectory but
also by its rotation state, the motion of polarized
test bodies will not be the- same. I, therefore,
propose the following stronger weak equivalence
principle (WEP[II]) to be tested by experiments,
which states that in a gravitational field, the mo-
tion of a test body with a given initial motion
state is independent of its internal structure and
composition (universality of free-fall motion). In
our general framework, the imposition of WEP[II]
guarantees that EEP is valid. Therefore we have,
in this framework, the following relations among
the equivalence principles:

WEP[I]~WEP [II]=EEP.
To test WEP[II] and, hence also EEP, Eotvos-
tyye experiments on electromagnetic-energy-po-
larized body are proposed. ' In the following, I
will derive these results. "

The Lagrangian density. ~Wart with the follow-
ing interaction Lagrangian density" 4& for an
electromagnetically interacting system in a grav-
itational field

grangian. For test bodies, the gravitational fields
can be treated as external fields.

Constitutive tensor density. —The constitutive
tensor density y"" has the symmetries X'"'

In general, it has 21 independent
components. For a metric theory, X'"' is deter-
mined by the metric g" and equals (-g)'"(—,g'"g"

i lg)li)

Str ess ener-gy tensor density, four mom-entum,
and center of mass. —In conformity with the defi-
nitions for the standard Lagrangian formulation
and for dielectric materials, I define the electro-
magnetic stress-energy tensor density as

k(EM) -A (sg(EM)/A ) 5 0 g(EM)

—(I/4&)( ~klmnA F
+ lx)lmnF F 5 k)

The total stress-energy tensor density is 1',.'
= K,.~& ~&+ g,.~~ &, where g,."~ ~ is the usual stress-
energy tensor density of particles. The four-mo-
mentum vector of a test body is P, =1 K,'d'.x.
Defining the center of mass as X'= f x'&0'd 'x/Po,
then one can readily show that

X'=P'/P'

~„'= -ss, /ax'. (4)

From Eq. (4), one can show that

for a test body.
Matter-resPonse equation. From —the Euler-

Lagrange equations, I derive the matter-response
equation

dsr
Qjmr ()(x xi)

P.=(III«)X""',.fF„F„d'x
+ l g fPl l (P) d sx (5)

where X
"~' is a tensor density of the gravitational

fields (e.g., g„., y, etc. ), and j", F,,=A, , -A, , —

have the usual meaning. This is the most gener-
al interaction Lagrangian density with the follow-
ing conditions: (i) uncharged particles following
geodesics of a Riemannian metric; (ii) electric
charge being conserved; (iii) only gravitational
fields (potentials), not their gradients, being in-
volved in g„' (iv) quadratic in the gradient of the
electromagnetic potential and no masslike terms
involved in 2, . In the absence of gravity, 8, is
assumed to reduce to the special-relativistic La-

I now impose the condition of WEP[I]. Since a
nonelectromagnetically interacting test body fol-
lows a geodesic in the metric g", any other test
body wiQ follow such a geodesic too. Choose a
Fermi-normal coordinate system such that the
test body is at rest in the system and the Christ-
offel symbols vanish along the geodesic. I then
have P =d(P'X„)/dt=0. Compare this with Eq.
(5), I conclude that

~iikl fF F d3x

Lemma. —In a fixed coordinate system, Eq. (6)
holds for every test body if and only if
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e'"', cohere

~ii»i ( g)1/»(&gi»gil &giig»j+ ~~ij»i)

uihere y is a scalar function of the gravitational
fields and e "»' = (-g)'"e "»' ,n a Fer.—mi-normal
coordinate system of a test-body geodesic, by
the Lemma, WEP[I] holds if and only if

,st, m (10)

In a region R where gravitational effects are neg-
ligible, X

"»' = » g'»q" ——,'g "q»i (where q" is the
Minkowski metric). Starting from this region,
integrating Eq. (10) along the geodesic, and trans-
forming to an arbitrary coordinate system, I get
Eq. (9). On the assumption that there exists a
geodesic network connecting every point in space-
time to such a region Xt, Eq. (9) then holds for

1, if (ijhl) is an even
permutation of (0123),

e""'=' —1, if (ijhl) is an odd
permutation of (0123),

, 0, otherwise.

[If one expands F,, in powers of y""' and X""
and substitutes it into Eq. (6), every order in the
expansion of (6) must vanish. ] From the vanish-
ing of the first-order expansion,

kjk'l f F (0)F (0) d 3+ 0 (7),m J ij kl

where F;,. is the solution of Maxwell's equations
in special relativity. Using Eq. (7) and consider-
ing test bodies consisting of a parallel-plate ca-
pacitor and a solenoidal coil of current, one can
derive (i) yo"3 =Xo»" =go"', and (ii) all other
components of y""' not related to the compo-
nents in (i) by the symmetry property vanish.
Therefore X"" = y e"", where y-=X"23 and I
prove the "only if" part of the Lemma. If X""

e'"', we have

f i&»l F F d 3x- 4 f+ eii»lA A d 3x —0 (8)

because the second derivatives of gravitational
fields can be neglected for test bodies. In the
derivation of the first equality in Eq. (8), an av-
erage over a dynamical time scale for the body
has been performed in order to make the surface
terms vanish. This is the standard virial-theo-
rem technique used in treating a macroscopic
body. Q.E.D.

Theorem I.—Eor a system &chose Lagrangian
density is given by (1), WEP [I]holds if and only

every space-time point. Now it is easy to see
that y is a scalar function of the gravitational
fields. Moreover, if Eq. (9) holds, then Eq. (6)
holds in the Fermi-normal frame, and hence
WEP[I] holds. Q.E.D. If yg0 in (9), the gravity
coupling to electromagnetism is not minimal and
EEP is violated. Therefore in Theorem I, we
have shown that WEP[I] does not imply the validi-
ty of EEP.

From Theorem I, one can easily prove the re-
sults of Lightman and I ee'. Corollary. —Eor an
electromagnetically interacting system in a stat-
ic spherical-symmetric gravitational field @those
Lagrangian density is given by

Z, =(1/8 )ii(eE' Xi -/»p) -A»j (-g)"'
—Q, mz(ds, /dt) 6(x —xi),

svhere e and p, are functions of the gravitational
fields, WEP[I] implies EEP.—For the above La-
grangian density y'»3~ = 0; hence, y = 0. Q.E.D.

In the theory with y
"»' given by (9), it can be

shown with some calculations that there are anom-
alous torques on electromagnetic -energy-polar-
ized bodies unless ran=0. For y=0 in (9), the the-
ory reduced to metric theory and EEP holds.
Therefore we arrive at the following theorm:
Theorem II. For the L—agrangian (1), WEP[II]
implies EEP

Eotvos-type experiments on test body. —To test
WEP[11], it is crucial to perform Eotvos-type ex-
periments on polarized bodies. In view of Theo-
rem II, this is also an excellent test for EEP.

The nonmetric theory given by Eq. (9) may be
related to the existence of parity-nonconserving
field or spontaneously broken symmetry. Since
these concepts are quite fruitful in weak interac-
tions and in obtaining unified weak and electro-
magnetic theories, serious efforts deserve to be
spent in this direction for gravitation. Detailed
analyses of this nonmetric theory and the Eotvos-
type experiments on polarized bodies will be pre-
sented elsewhere.
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The newly discovered mesons with mass near 1.87 GeV are speculatively identified
with diquark states of integrally charged Han-Nambu quarks. The weak decays of di-
quarks are found to be similar but not identical to the decays of charmed mesons.

The SU(3) color forces in quantum chromody-
namics are such that the lowest energy states are
color singlets. If colored states exist at all, their
mass scale is set by the mass of free quarks or
by the mass of the lowest colored composite
state. In the present Letter I wi11 speculatively
identify the newly discovered charged and neutral
mesons' of mass around 1.87 QeV with the color
triplet diquark states (qq), formed by integer-
charged Han-Nambu quarks. ' These color-triplet
states are the lowest bound colored states to be
expected. ' I will also assume that quarks and di-
quarks have roughly the same mass. With this in-
put, Nambu's mass formula" leads to small
masses for color-singlet mesons and baryons,
and gives for the mass of color octet mesons

m ((qq), ) =-', m ((qq), ) =4 GeV.

Hence, in this picture one may identify the J/g
family and in particular the states around 4 GeV
seen in e'e annihilation with (qq), states as was
done with some success in previous work. 4 If en-
ergetically allowed, these color-octet states will
now partly decay into pairs of quarks and diquarks,
and partly —via color-octet symmetry breaking—-directly into usual hadrons.

The assumed existence of mesonic diquarks re-
quires special assignments for the baryon num-
bers of quarks or the violation of baryon number
in diquark decays. An interesting possibility is
the baryon number assignment' B= 0, 0, and 1
for the three colors red, white, and blue, denot-
ed here by 1, 2, and 3. In the following this ease
shall serve as an illustrative example. It gives

special significance to the SU(2)(color) subgroup
(the color isospin group) which affects red and
white quarks only. These quarks will eventually
decay into an odd number of leptons and thus
must carry lepton number. The choice L= -1, 1,
and 0 gives zero lepton number to usual baryons
and allows for the existence of mesonic diquarks
with lepton number zero, a case discussed al-
ready by Nambu and Han' for a somewhat differ-
ent purpose. With the strangeness quantum num-
ber S= 0, 0, and —1 for u, d, and s quarks, the
Gell-Mann-Nishijima formula may be written as

According to the Pauli principle the color-trip-
let diquarks of spin zero and orbital angular mo-
mentum zero form a (3*,3) multiplet of parti-
cles. ' Out of these nine states six have simulta-
neously baryon and lepton numbers different from
zero and l(color) = —,'. The remaining 3* SU(3) flav-
or multiplet has I(color) =0. It consists of the
mes ons

E' = d'u' —d'u'

g)0 = Q&82 —Q2S

a = d's' —d's'

The isospin-singlet meson E has zero charge
and is expected to be lighter than the isospin
doublet D', both in contrast to the case of the
charmed F meson. " Another difference with the
charm picture appears for the spin-1 mesons
with orbital angular momentum zero: The spin-1
diquarks are in a 6 representation of SU(3) flavor
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