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It is shown that zero-point and thermal vibrations change the vacancy formation volume
calculated from classical lattice statistics by usually no more than 10 3 at all tempera-
tures. In view of the recent interest in relating the temperature variation of the vacancy
formation volume to Arrhenius plot curvature, the validity of lattice statics, as a tool for
the calculation of temperature-dependent defect properties, is established.

As the name of the method implies, lattice stat-
ics (LS) is a technique used for calculating atom-
ic relaxation displacements due to the presence
of a defect in a nonvibrating, static lattice; that
is, the usual formulation of LS' ' calculates the
relaxation volume, hV~"", hence the defect (for
our purposes, the vacancy) volume of formation,
b V„""=0+LV~"" (0 is the atomic volume), at
O'K in the absence of zero-point vibrations.

It has recently been shown by Gilder and Laz-
arus~ that Arrhenius-plot curvature can be ex-
plained in terms of a vacancylike defect, in which
the anharmonicity of the lattice modes gives rise
to a large thermal coefficient of expansion asso-
ciated with the vacancy activation volume of dif-
fusion, hV =hV~+b, V„(hV„ is the vacancy mi-
gration volume). As their analysis is based on
the experimental result for zinc' and cadmium'
that the activated-vacancy thermal coefficient of
expansion P„=hV '(B'AV/aT)~=T '~ 15Po (po is
the thermal coefficient of expansion of the per-
fect lattice), the logical question that arises is
whether a calculation of the thermal coefficient
of expansion associated with the vacancy forma-
tion volume, p~=aV~ '(ab, V~/sT)~, in the ab-
sence of calculated or measured values of P„
(the thermal coefficient of expansion associated
with the vacancy migration volume), would yield
values comparable to the large experimental val-

ues of P„necessary to make their explanation
plausible from a theoretical point of view.

Since there are now, for the simple metals,
reliable pseudopotential-derived interionic po-
tentials which have an intrinsic temperature de-
pendence due to the variation of electronic charge
density with lattice parameter or temperature,
it is evident that a relaxation volume based on
such a potential would exhibit a temperature de-
pendence. But this volume would be the result,
at each temperature, of the transformation of a
portion of the discrete interionic, pairwise po-
tential energy of the crystal to continuous elas-
tic energy stored in the vacancy relaxation vol-
ume. However, we know that at all ternpera-
tures there exist both zero-point and thermal vi-
brations that can channel energy into the elastic
deformation that represents the vacancy relaxa-
tion volume. The obvious question, then, is
whether LS, in ignoring both zero-point and ther-
mal vibrations as possible sources of energy
available to the elastic deformation, introduces
negligible errors in the calculation of b, V„(T),
or whether these sources of energy change the
calculated value of bV„'"'(T) significantly.

It is the purpose, then, of this Letter to ex-
plore the influence of both zero-point and thermal
vibrations on the LS calculated value of b.V„(T).
We herein evaluate their contribution, AV~~, to
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AF~, and show that for all metals hV~" «4V~.
Thus, the usual formulation of LS is shown to be
valid at all temperatures when calculating vacan-
cy formation volumes in metals.

In the notation of Tewary, ' the problem of ca1-
culating the vacancy relaxation volume is equiv-
alent to that of calculating the vacancy dipole mo-
ment or "strength" G, since

~V, =G/3Z,

Then

U, =-P;S *(I)xr (I) =-P„G„„""q,

U, = (KQ/2)Q C „&q„q 8, (6)

where N is the number of atoms in the crystal,
and C 8 is the elastic-constant tensor. Differen-
tiating U, and U, with respect to q, it is easily
shown that'

where E is the isothermal bulk modulus of the
perfect crystal. %hen zero-point and thermal
vibrations are not taken into account, the equi-
librium condition for the "crystal with defect"
state is written as follows:

and

Q„sU,/aq„= —G"",

g (a/Bq )(U, +U,)=0, Q „BU2/Bq„= 3KEVa.

Substitution of Eqs. (7) and (8) into Eq. (2) then
yields Eq. (1) for bV„=b,V~ "~. If, on the other
hand, zero-point and thermal vibrations are tak-
en into account, Eq. (2) must be modified. The
equilibrium condition for the crystal with defect
state is now

where q is the vacancy-induced distortion (which
for simplicity is assumed to be uniform), U, is
the work done by the atoms at positions r(1) re-
laxing against the vacancy-created forces F*(I)
by an amount ar Q) =q „r ( I) (n = 1,2, 3 specifies
the vector components at the site I), and U, is
the elastic energy associated with the crystal-
volume change hV„. Thus, under these condi-
tions,

P„(8/aq„)(U, +U + U ) =0, (9)

G stat p g qtk(t (3)
where U, is the difference in vibrational energy
between the "defect-present" and "defect-free"
states of the crystal. Since the vibrational part
of the Helmholtz free energy of the crystal in the

(4) quasiharmonic approximation is given by the ex-
pression'

E„b=ghv, /2+kt) T P in[1 —exp(-hv, /kB T)], (10)

where v, is the ith normal-mode crystal frequency, it follows from the definition of U, that
3N

U, = AE„.„=hp b, v,. (—,
' + exp(-h v, /k t) T)/[1 —exp(-h v, /k B T)]],

where hv, represents the change in the frequency v, induced by the presence of the vacancy. The pres-
ence of U, in Eq. (9) contributes the additional term b,V„~b to b,V„"~, or equivalently the term b, V~ b

to gV stBt.

Vz, z =AVz, J '+hV

By substituting Eqs. (7), (8), and (12) in Eq. (9), the relation between AVa~b and U, is found to be

b V~~b= —(1/3Ã)+~BUS/Bq

(12)

(13)

Differentiating Eq. (11)with respect to q„, substituting the result in Eq. (13), and making use of the di-
mensionless variable x; =h v, /kt) T, we then obtain

kqe e ——(ke T/SK)gg ((ekx /eq„)( —,'+ exP( —x;)/[t —exP( —x;))$
—(ex,./eq„) (x,. exp(-x, )/I( - exp(-x;)1*)). (14)

As we are mainly interested in an order-of-magnitude estimation of AVa "~/0, the sum over normal-
mode frequencies in Eq. (14) can be evaluated by means of either the Debye density of states, gz, =(9N/
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vn') v' (vo is the Debye cutoff frequency), or by the Einstein density of states, gz = 3N5(v —vE) (vE is
the Einstein frequency). In addition, we need to know the dependence of each frequency shift b,x on the
frequency x. To determine this dependence, we suppose that there is no dispersion in the phonon spec-
tra; that is, that v =Qc/27), where Q is the phonon wave vector and c is a suitably averaged sound ve-
locity. The change in sound velocity, b,c, and the change in wave vector, EQ, induced by the pres-
ence of the vacancy are then related to b,x in the following way:

(15)

where

p, =b c/c +bQ/Q = b c/c —hv~/3V „
since Q -V, "', V, being the defect-free crystal volume. Taking into account the "breathing-like" lo-
cal mode introduced by the vacancy, Gilder and Lazarus find that )), = —1/6N. This result appears to
be reasonable in view of the fact that we expect that the vacancy does not change the solid's frequen-
cies by more than ™N '. Thus, from Eq. (15), bx = -x/6N Re.placing Ax by this value in Eq. (14),
we obtain

av~ b=(kBT/18kN)p, p (ex, /eq )(—,'+exp(-x, )/[1 —exp(-x, )]-x, exp(-x, )/[1-exp(-x;)]']. (16)

Since each frequency of the Debye solid is fractionally shifted by the same amount p. , we suppose that
Eq. (16) is equally valid for the single frequency of the Einstein solid. The quantity Q ex/eq„ is eval-
uated as follows:

Q„ex/eq. =Q.(ex/ev), (ev/eq. ), = -Q.v-'(e v/eq„), , (17)
where the Gruneisen constant y = —(V/v)(ev/ev)r = —(V/x)(ex/ev)r. Since V = V,(1+q„)(1+q8)(1+q ),
we then obtain

p.V-'(eV/eq. ),=p„(1+q„)-'=p„(1-q„)= 3,

since p q =V+/NQ™"N '. Between Eqs. (17) and (18) we have

p„ex/eq = —3yx.

Thus, in the Debye model, substituting Eq. (19) in (16) yields
xD

hvz&D)~b/Q= —(3kB yT/2KxD'Q) 1 x3[2+e '/(1 —e ") —xe "/(1 —e ")~]dx

= b,v~(n) /Q = —(yk))eD/2KQ)ED,

where

(18)

(19)

(20)

(21)

(22)

where

ED=-', +(3/xD') f"D[x'e "/(1 —e ")][1-x/(1-e ")]dx,

OD is the Debye temperature, and xD is the dimensionless cutoff frequency. By a similar procedure,
Eq. (16) yields, in the Einstein approximation, the following expression for &V~N)" /Q:

Dv~(E) /Q = Av~(E ) /Q = —(yk& 8&/2KQ)FE,

Il
E

= 0.775(—,'+ exp(-xz)[1 —exp(-xE)] —xE exp(-xz)/[1 —exp(-xE)]'],

xE is the dimensionless Einstein frequency, and
the Einstein temperature 8E = 0.7758D."

A numerical evaluation of the functions I D and
I'E for the case of aluminum indicates that they
are very closely equal at all temperatures, the
fractional difference between them varying from
2x 10 ' at the melting point (933'K) to 3x 10 ' at
0 K. However, the important aspect of the pres-
ent result for the case of aluminum is that Avz""/

i QP~"~-3x 10 ' at Q K and - 5x 1P at the me].t-
ing point. As the explicit contribution of the va-
cancy-induced local mode to the sum of Eq. (14)
can increase hv~~b/Q by about at most a factor
of 2,4 we are indeed justified in neglecting it.

But the size of this vibrational effect is not pe-
culiar to aluminum. Of all the metals, the effect
is most pronounced in lithium, for which (b, v~ "/
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AV~"") =10 ' at 0 K. Silver and copper exhib-
it one of the smallest effects: about one-third of
that for lithium.

Considering the fact that the uncertainty in the
most precise measurement"' of hV is -10 ',
the contribution of both zero-point and thermal
vibrations to the usual LS-calculated vacancy
formation volume is indeed negligible. Thus, the
usual formulation of LS suffices for the calcula-
tion of the vacancy formation volume at all tem-
peratures.
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The trigonal-to-pseudotetragonal structural first-order transition in [111]-stressed
SrTi03 is shown to be a realization of the continuous three-state Potts model. The meas-
ured order-parameter discontinuity at the transition, Q,p), depends on the trigonal or-
der parameter (y(«&j)~ M as I (Aq')I~IMI, with 6+ =0.62+ 0.10 (mean-field theory pre-
dicts 6*=1). This agrees with renormalization-group predictions, and proves that the
model has a first-order transition even in the Quctuation-dominated region,

Multicritical points in stressed perovskite crys-
tals undergoing displacive phase transitions have
been the subject of much recent interest. ' 4 It
has been shown' that stress p along the [100]axis
leads to a bicritical point' in SrTiO, ' and to a
tetracritical point in LaA10, . Stress P along the
[111]diagonal in SrTiO, leads to a rather more
complicated phase diagram, studied both experi-
mentally and using mean-field theory in Refs. 1,
2, and 4 and shown in Fig. 1. At constant stress
P (+0), one first observes a second-order transi-
tion from the "pseudocubic" phase into a trigonal
phase at temperature T,(P), and then, at T,(p),
a first-order transition into a "pseudotetragonal"
phase. For P& 0 there is a direct second-order
pseudocubic-to-pseudotetragonal transition. The
point P =0, T =T,(0) =T,(0) is thus bicritical. '
However, it is not identical to the one discussed
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FIG, 1. Experimental phase diagram of SrTi03 for
stress along the [111] diagonal, from Ref. 1.

in Refs. 3 and 5. A renormalization-group study
of this phase diagram showed' that the transition
at T,(P) is Ising-like, while that at T, (0) =Tz(0)


