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The momentum profiles from positron annihilation with core electrons in Al have been
observed with a recently developed two-detector Doppler-broadening technique. Indepen-
dent-particle-model (IPM) calculations are in good agreement with the experimental re-
sults beyond twice the Fermi momentum and suggest the absence of strong positron-elec-
tron correlation effects in this region. Comparisons of calculations with properly normal-
ized momentum profiles indicate that high-momentum core contributions may provide in-
formation on the nature of vacancy-type defects and self-trapping effects.

This Letter is concerned with positrons anni-
hilating in pure metals after thermalization. In
metals a positron goes into an extended Bloch
state. In the dominant decay mode of a thermal
positron and an electron, two y rays are emitted.
Since the annihilating electron possesses momen-
tum, the relative angle between the two photons
is slightly less than 7, and the energies are Dop-
pler-shifted. From a measurement of either the
distribution in relative angle or the Doppler shift,
information about the momentum distribution of
the electrons can be obtained. Angular-correla-
tion studies have been very useful for determin-
ing electron momenta up to approximately twice
the Fermi momentum.* :

Because of the high potential barriers experi-
enced by a positron in the regions close to nuclei,
annihilation with deeply bound core electrons is
very improbable as compared to annihilation with
outer electrons. Consequently, the very-high-
momentum parts of the spectra are of quite low
relative intensity, and so far they have not been
experimentally accessible because of background
and counting-rate problems. In the following we
describe how these problems have been overcome
such that annihilation with Al 1s electrons is ob-
servable.

Information on the annihilation with core elec-
trons is desirablefor several reasons. First,
to obtain a reliable determination of the momen-
tum distribution of conduction electrons, one
must be able to subtract the core contribution

from the measured momentum profiles. Second,
at sufficiently high momenta the simple indepen-
dent-particle model (IPM) should suffice for the
description of the annihilation. By way of con-
trast, for annihilation with conduction electrons,
one obtains large enhancements above the predic-
tions of the IPM because of the attraction between
the positron and the electron under consideration.
The high-momentum tails should thus provide a
convenient limit for experimental and theoretical
investigations of this enhancement effect. Third,
having assessed the applicability of the indepen-
dent-particle model in the high-momentum limit,
we expect that comparisons between simple mod-
el calculations and experimental momentum dis-
tributions, solely from deep-core electrons in
samples containing trapping centers, can yield
quantitative information on these defects.

To measure the high-momentum regions of the
electron distribution, we found it necessary to
extend the conventional Doppler-broadening meth-
od, which examines only one of the photons from
the annihilation process. Our experimental ap-
paratus consists of two Ge(Li) detectors situated
s0 as to detect both y rays in coincidence from
positrons annihilating in the sample under study.? 3
Each detector has an efficiency of 10% and an en-
ergy resolution of ~1.6-keV full width at half-
maximum at 514 keV. The resulting energy sig-
nals E, and E, are converted to digital form; and
the sum and difference of the two energies are
calculated by and stored in a computer.
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FIG. 1. Experimental Doppler-broadened spectra in
the difference energy are shown including data in the
sum energy from @mc?+0.4 keV) to (2mc?=2.0 keV)
and a similar range of Ep for the Sr-85 curve. The Sr-
85 curve is a measurement of the response of the sys-
tem.

The sum energy E,=E,+E, equals the total en-
ergy of the electron-positron system prior to an-
nihilation, i.e., E;=2m?-Ey, where m, is the
electron rest mass, c the velocity of light, and
E g the binding energy of the electron and positron
to the solid.

In the electron-positron center-of-mass frame,
each photon carries off half of the total energy
liberated in the annihilation. In the laboratory
frame the energies are Doppler -shifted, and the
energy difference AE between the two y rays is

—D."_ 2 2
AE:EZ—E1=£—p+—p-‘C—/E—T'EE°‘. (1)

Here, D is the electron-positron momentum in
the laboratory system, and ¢ is the velocity of
light in the direction of the photon with energy
E,. The approximation AE ~€.p, which holds
for pc < E 1, has been applied to the cases stud-
ied here. A measurement of AE thus determines
the projection of the momentum P along the pho-
ton direction. In angular-correlation experi-
ments, a perpendicular component is obtained.
When compared with a single-detector Doppler-
broadening scheme,’ there is a great advantage
of the two-Ge(Li)-detector technique for inves-
tigating the very low intensity high-momentum
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tails. This arises from the fact that in the ener-
gy regions of interest the single-detector spec-
trum is distorted by detection of higher-energy

y rays, pulse pile-up difficulties, and incomplete
charge collection on the low-energy side of the
annihilation peak. A single Nal detector in coin-
cidence with a Ge(Li) detector will partially re-
duce background on the higher-energy side of the
annihilation peak.* In the present experiment,
the coincidence requirement reduces the above-
mentioned background problems by a factor of
more than 10%, thus making measurements in the
very-high-momentum regions feasible. A fur-
ther advantage is an increase in projected mo-
mentum resolution by a factor of v2 arising from
the use of the Doppler shift of both y rays. Final-

- ly, as expected, the momentum spectra are sym-

metrical around zero.

The signal handling in the two-photon coinci-
dence measurement was done to minimize random
coincidences and spurious effects of pulse pile-
up. The system was digitally stabilized on the
centroids of the singles events in each detector
to eliminate long-term gain shifts.

The response function of the total system was
determined by a pseudocoincidence technique in-
volving 514-keV y rays from Sr-85 detected suc-
cessively in the two detectors. Sr-85 data were
taken at various times during a positron run to
determine if any systematic changes occurred in
the system response function. The experimental
Doppler-shift data and the data for the response
function were used, without smoothing, in an
iterative deconvolution process similar to that of
van Cittert.® This procedure avoids the introduc-
tion of systematic errors caused by inadequate
functional models. Thus far, the deconvolutions
have been carried out only with respect to the
variable AE.

We have investigated a single-crystal Al sam-
ple of purity greater than 99.999% annealed at
three quarters of the absolute melting point for
more than 12 hours and slowly cooled. Approx-
imately 50 uCi of Ge-68 was deposited as a thin
film on one of the inside surfaces of a two-sam-
ple sandwich to minimize the source contribution
to the annihilation photopeak. The coincidence
data rate was approximately 100 counts per sec-
ond. The singles rate was 10 times larger, when
measured in the photopeak. Total data accumula-
tion time was typically 72 hours.

Figure 1 shows the raw spectra of Al and the
measured response curve for Sr-85. These spec-
tra are plotted as a function of the difference en-
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FIG. 2. Comparison of experimental and calculated
probability distributions for Al. Wigner-Seitz calcula-
tion with overlapping atomic potentials. The different
calculations leads only to a 20% variation in the predict-
ad curves, and the size of these deviations are shown in
the figure. Open circles and crosses refer to measure-
ments in Ref.m6 and in this work, respectively; Texp
=175 psec. jo P(AE)d(AE) =3. The Fermi momentum
for aluminum corresponds to AE =3.47 keV.

ergy and include all data in the sum energy from
(2mqc?+0.4 keV) to (2mqc? - 2.0 keV) and a simi-
lar range of E, for the Sr-85 pseudocoincidences.
Figure 2 contains the deconvoluted data for Al
in the form of a probability distribution P(AE)
with [, P(AE)d(AE) =1. Only positive values of
AE are shown. The small oscillations beyond 20
keV arise from deconvolution of the data which
had insufficient statistical accuracy in this re-
gion. The figure also shows a comparison with
data taken by Hautojarvi® in an angular-correla-
tion apparatus of 1-mrad resolution on high-pur-
ity well-annealed Al single crystals. (AE of 1
keV corresponds to A9 =1.96 mrad.) The angular
distribution was normalized to our spectra at AE
=0. In the region of overlap, the agreement is
good. A small but significant deviation from 5 to
8 keV is observed. We attribute this to the back-
ground problem encountered in angular-correla-

tion studies at high momenta. We extracted the
Fermi momentum of the conduction electrons by
fitting a parabola to the top twenty points of the
full Doppler-broadened deconvoluted data. The
Fermi momentum determined in this way agrees
with the free-electron value to within 2%.7

Since the analysis of the data, to be presented
in the following, relies on knowledge of the pos-
itron lifetime 7, we measured this quantity for
Al. Our value of 175 psec is in good agreement
with MacKenzie’s experimental value of 170
psec.® This agreement supports our assumption
that the sample was free of trapping centers.

The probability P(AE ) (AE) is equal to the ra-
tio of the fractional annihilation rate A (AE)d(AE)
to the total annihilation rate x,, = LoA(AE M (AE).
Similarly, the annihilation probability P; (AE)
with an electron in the ith shell is given by

P (AE) =){(AE)/ Ay =TX;(AE).

From the independent-particle model, we have
calculated the functions )\;(AE) and the momen-
tum distribution, P;(AE), for positrons annihilat-
ing with core electrons i =1s, 2s, and 2p. The
relevant formulas can, for instance, be found in
the review paper by West.! Since the emphasis
in this investigation is on the high-momentum
tails from core electrons, we do not attempt to
calculate 7, which is dominated by the contribu-
tion from conduction electrons. Insufficient ac-
curacy in this quantity, which is difficult to cal-
culate,' would mask the comparison between the-
ory and experiment for the core electrons.

In the calculations, the electrons are repre-
sented by atomic orbitals. The overlap between
positron and electron wave functions is only ap-
preciable in regions close to nuclei, where po-
tentials are well known. Consequently, in the
important regions the shape of the positron wave
function can be obtained quite accurately from
numerical integration of the Schrodinger equa-
tion. However, the normalization of the positron
wave function in the region of overlap is sensi-
tive to details far away from nuclei, where the
positron is found with probability close to one.
This effect is illustrated by the following exam-
ples: A change in the potential from a single
atomic potential to a sum of potentials from
neighboring atoms leads to an increase in the cal-
culated annihilation rates of the order of 15%.
Similarly, we increase the annihilation rates by
~20% by going from the Wigner-Seitz model,® in
which the lattice structure of the specimen is
neglected, to the augmented-plane-wave model,*°
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known from band-structure calculations. While,
at present, we do not argue that any of these cal-
culations is superior to the others, we take the
above fractional differences as indicative of the
sensitivity of the core annihilation rates to de-
tails in the positron wave function far away from
nuclei. These details should also be sensitive to
the presence of vacancy-type defects and com-
parisons between experiments and simple model
calculations may serve to characterize the type
of these defects.

Figure 2 contains the calculated distributions
P,(AE) for the configurations (1s)?, (2s)?, and
(2p)°, as well as the sum over these distributions.
The results are from the Wigner-Seitz model
with overlapping atomic potentials. As mentioned
in the beginning, the IPM should, if anything, re-
sult in an underestimate of annihilation rates.
From Fig. 2, it is observed that the Wigner-
Seitz model with overlapping atomic potentials
leads to very good agreement with the experimen-
tal data already at twice the Fermi momentum.
At lower momenta, the importance of the elec-
tron-positron correlations and contributions from
outer electrons become significant, and they
raise the data above the theoretical curve. Note
that for the most highly Doppler-shifted events
(AE =27 keV), significant contributions are com-
ing from the Al 1s electrons.

Even including the slight difference between the
various models mentioned above, we markedly
disagree with the predictions of Carbotte and Sal-
vadori!! according to which, because of enhance-
ment effects, the experimental results should be
almost a factor of 3 above the independent-parti-
cle-model calculations for 2s and 2p electrons in
Al. The Carbotte-Salvadori result seems diffi-
cult to understand. The electron densities in the
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regions occupied by core electrons are very high.
If the electrons are considered as a Fermi gas

in the spirit of the Thomas-Fermi atom, these
high densities lead to much smaller enhancement
factors. In fact, from the results of Kahana'®
one obtains an enhancement of only a few tens of
percent.
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