VoLUME 38, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1977

Stabilization of Resistive Kink Modes in the Tokamak®*
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Optimized current profiles are shown to be capable of providing simultaneous stability
against all resistive kink modes in the tokamak.

The efficient utilization of the magnetic field in
a tokamak increases with the ratio B4 /B, of po-
loidal to toroidal field strength. In order to avoid
unstable helical magnetohydrodynamics (MHD)
perturbations (kink modes) of the form expi(m6
-ng), the “safety factor” q(r)=27/L(r)=vB,/RBg
must, however, be restricted.! If there is a ra-
dial range wherein ¢(r) <1, then the fundamental
mode with m =1 and n =1 is unstable,! whether or
not the plasma is perfectly conducting at the point
where g(r)=1. Higher modes (with m >1) can
be unstable only as resistive kink, or tearing,
modes? for which the singular point, where ¢(s)
=m/n, falls into a resistive region.

The object of this Letter is to demonstrate,
within a constant-resistivity, cylindrical theory,
the existence of g profiles that provide simulta-
neous stability against all the low-m kink modes,
while minimizing the limiter value ¢,=¢g(a). The
principle is contained in a comparison theorem?
that states the following: For two profiles of the
rotational transform ¢ having the same shear (di/
dr), and the same transform ¢ at the singular
point of a given mode, if the two profiles every-
where satisfy |t,(r) -t >lt,0r) -t l, then ¢,(r)
is more stable against the given mode than t¢,@).
Resistive kink instabilities can also be elimi-
nated?® (in sufficiently hot plasmas) by a local
pressure gradient at s due to favorable average
toroidal curvature,® or by the proximity of a per-
fectly conducting exterior shell.

To illustrate optimum profiles, we will consid-
er two cases: case A, a profile with q,>2, giv-
ing stability against all finite-m modes, without
need of a conducting shell or of toroidal-curva-
ture effects; and case B, a similar profile, but
adding a conducting shell to achieve stability at
q,<2.

We consider first a straight cylindrical config-
uration, and neglect pressure-gradient effects.
The magnetic perturbations outside the resistive
layer satisfy the equation for a marginal MHD
mode, namely 2
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where =B, /m is the perturbed poloidal flux
function, j=d(#Bg)/rdr is the equilibrium longi-
tudinal current density, and

F=§--I§=(m—nq)Be/r. (2)

For a marginal resistive mode, Eq. (1) is satis-
fied everywhere, i.e., there is no discontinuity
at the singular surface.

Analytic solutions of Eq. (1) can readily be
found for the model of j(r) shown in Fig. 1. In
this model, there is a central current channel of
radius 7 = ¢ with uniform current density j(»)=j,,
surrounding by a “pedestal” of radius » =a with
uniform, but lower, current density j(»)=j,. For
7 >a, the current density vanishes, so that the
limiter could be placed just outside » =a, with a
conducting shell at» =b.

Within 0<7 <c, the solution of Eq. (1) is given
by

Vb= r/c)". (3)

Across v =c, the matching conditions are that §
=y, be continuous, and that

..[_Zl_).’_].c—ﬁ_ 1 -_ 2m(l-p)
¥, —ch[]]‘ cm -nq,)’ (4)

where the square brackets [], denote the discon-
tinuity of the variable across v =c, and p =j,/j,

is a factor describing the height of the pedestal.
(Given ¢, and gq,, values of p are possible within
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FIG. 1. Simple model of j{r) used in the analytic cal-
culation.
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the range 0< p <q,./q,; the relation

c®_q./9,-p
a® 1-p (5)

then determines the ratio ¢/a.) Applying these
matching conditions at » =c¢, the solution of Eq.
(1) within ¢ <7 <a is given by
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Across ¥ =a, the matching conditions are again
that ¥ =9, be continuous and that

2mq, p

[d)’]a= m [] - .
aF, ¢ aq(m-nq,)
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Applying these matching conditions at » =a, and
using Eq. (6) at » =a for ¥,, the solution of Eq. (1)
for » >a is given by
m
N
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If the conducting shell is absent (b —«), the stability condition (i.e., the condition that no marginal
mode exists) is that the coefficient of the »™ term be positive, i.e.,

1-p

1. 1=p -
m-nq,

m-nq,

q,?
q.m-nq,)

Suppose, first, that the pedestal is entirely ab-
sent, i.e., p =0. In this case, instability occurs
if 0<m -ng,<1. For the (m,n)=(2,1) mode to be
stable, it is clearly necessary to have g, <1, in
which case the (m,n)=(1,1) mode is unstable.
Moreover, if q, is just above 1, the entire se-
quence of modes, (2,1), (3,2), (4,3), etc., is
unstable. Even if the m =2 mode were stabilized
by means of a fairly close conducting shell, the
higher-m modes of this sequence would typically
remain unstable, since the effect of the shell falls
off rapidly with rising m. With the m =2 mode
stabilized by a conducting shell, one might con-
sider setting g just above 1.5, so that the modes,
(3,2), (4,3), etc., become stable. However, in
this case, the sequence of modes, (5,3), (8,5),
etc., would be unstable. It is, thus, of considera-
ble interest to determine whether, in either case,
a current profile with a nonzero pedestal can pro-
vide simultaneous stability against all modes.

Let us consider case A, in which ¢, is just
above 1, and g, is just above 2, with a finite val-
ue of p in the range 0<p <0.5. If q, is infinitesi-
mally above 1, Eq. (9) shows clearly that the “in-
ner” sequence of modes (2,1), (3,2), (4,3), etc.,
whose singular surfaces fall into the pedestal re-
gion, is positively stable, since in each case the
left-hand side of Eq. (9) is positive and the right-
hand side is negative. We must also, however,
demonstrate the stability of the “outer” sequence
of modes (3,1), (5,2), (7,3), etc., whose singu-
lar surfaces fall outside the pedestal region. A
condition stronger than (9) would result from re-
placing (c/a)*™ by (c/a)?; we do this, and substi-

-(2)"

©)

l

tute Eq. (5) for c/a, to obtain the sufficient stabil-
ity condition (1 ~-2p)(m —ng,—1)>0, after using
m-ng,=1 and q,/q,=2. Sincep <q./q,=0.5, this
condition is always satisfied by the modes of the
“outer” sequence, which have m —nq >2.

If g, and g, exceed 1 and 2, respectively, by
small but finite increments, a reasonable num-
ber of the modes in both the “inner” and “outer”
segences can be made positively stable. This is
illustrated in Fig. 2, for the case where ¢,=1.05
and q,=2.1, and for various values of the pedes-
talp. We see that, in this case, the optimum
value for p, in the sense of stabilizing the great-
est range of low m values (m < 8), is about 0.3.

Let us now consider case B, which requires a
conducting shell to stabilize the m =2 mode, but
offers the advantage that the limiter ¢ value can
be dropped below 2. Here ¢, is again just above
1, but g, is chosen to be just above 1.5, with a
value of p in the range 0<p < 4. As before, if
q. is infinitesimally above 1, Eq. (9) shows that
the “inner” sequence of modes, with (m,n)=(3,2),
(4,3), etc., is positively stable, for any finite
value of p in the above range. We must also,
however, demonstrate the stability of the “outer”
sequence of modes (2,1), (5,3), (8,5), etc. For
q, infinitesimally above 1.5, we find that the sta-
bility condition is never satisfied for the (2,1)
mode, but it can be satisfied for the (5, 3) mode,
and all higher modes of this “outer” sequence,
provided p <0.32. The (2,1) mode can, however,
be stabilized by means of a conducting shell. The
requirement on the radius b of the shell can be
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FIG. 2. Stability diagram for modes (m,%) in case 4
with use of the current profile of Fig. 1, with ¢.=1.05,
g,=2.1, b=, and various values of the pedestal p.

determined from Eq. (8) by setting ¢/$.>0 at» =b.

Employing q,=1, ¢,=1.5, Eq. (5) for ¢/a, and
(m,m)=(2,1), we obtain

b/a<(4/3p)V4. (10)

For p ~0.3, this gives b/a<1.45, a requirement
that could be met rather easily.

The simple analytic treatment given above has
the advantage of clarifying the role of a current
pedestal in stabilizing low-m modes. However,
as we have seen, the use of a discontinuous func-
tion for j(r) has the disadvantage of exciting high-
m modes. In order to investigate the possibility
of stabilizing all kink modes simultaneously, we
have employed a computer program that deter-
mines the stability of arbitrary smooth current
profiles by calculating the quantities A’ that mea-
sure the potential-energy perturbations for the
various modes.

Figures 3(a) and 3(b) show two examples of
“realistic” current profiles resembling the ana-
lytic cases A and B. In both cases, we see that
the entire spectrum of modes is stabilized (A’
<0), the higher-m modes apparently being sup-
pressed by the smoothing of j(»). The corre-
sponding limiter ¢ values are 2.6 and 1.8, respec-
tively. In Fig. 3(b) a fairly close conducting
shell was needed (b/a =1.2); alternatively, one
could invoke toroidal-curvature stabilization® of
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FIG. 3. (a) Example of a stable profile similar to
case 4, with no conducting shell; the computed values
of A’ show that all the indicated modes are stable.

(b) Example of a stable profile similar to case B, with
a conducting shell at 7/a=1.2.

the weakly unstable higher-m modes of the “in-
ner” sequence, thus permitting a lower pedestal
and a larger value of b /a.

Our results are in accord with the experimen-
tally observed destabilizing effects of limiter ¢
values that approach 2, or high levels of impuri-
ty influx. In either case, the outer plasma re-
gion would be cooled, so that the pedestal on the
current profile would tend to be truncated short
of the g(#) =2 point. In larger tokamaks, it may
be possible to achieve better control over the
current distribution, so that profiles resembling
Fig. 3(a) could be approximated.

Experiments on conducting-shell stabilization®
proved successful in suppressing the (m,n)=(2,1)
mode, thus obtaining gross stability at g, <2.
There was, however, evidence of a deterioration
in confinement, particularly for q,~1.5. Our re-
sults for case B show that this could be explained
in terms of the truncation of the pedestal on the
current profile short of the point where q(»)=1.5.

We conclude with a word about our approxima-
tions. Our calculation is based upon a collision-
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al-fluid treatment of resistive modes in a cylin-
drical geometry. More detailed studies of these
modes have shown that there is no change in the
stability criterion due to diamagnetic and gyro-
viscous effects,® and that there is an improvment
in stability due to toroidicity.® Thus, our results
may turn out to be conservative when applied to
tokamaks in more collisionless, reactorlike re-
gimes.

*This work was supported by U. S. Energy Research
and Development Administration under contract No.
E(11-1)-3073.
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The potential, charge density, and interface states have been calculated for the ideal
interface between intrinsic GaAs, terminated on a (100) Ga plane, and intrinsic Ge. The
conduction band is continuous across the interface and negligible interface dipole moment
is found. Fractional occupancy of the interface bonds arises via a single partially oc-
cupied band of interface states. We find that a long-range potential disturbance must oc-
cur unless interface bonds are longer than bulk bonds by about 4%,.

The purpose of this Letter is to report the first
self-consistent calculation of the potential, charge
density, and spectrum of localized states at the
interface between two semiconductors. Interface
questions of fundamental importance from a car-
rier-transport point of view are as follows: What
are the discontinuities in the valence- and conduc-
tion-band edges? What is the spectrum and spa-
tial extent of states whose energy lies in the for-
bidden gap of both materials? Interface questions
of fundamental importance from a chemical point
of view are the following: What is the nature of
the covalent bond when it contains less than the
normal two electrons? What effect does this have
on the spatial arrangement of the atoms? The
work reported here will address both sets of
questions.

The constituent semiconductors chosen for this
study were GaAs and Ge, a system of interest for
several reasons. Firstly, each material can be
grown epitaxially on a substrate of the other, and
there is an extensive literature on properties of
the heterojunctions formed thereby.! Secondly,
since both materials have the same lattice con-

stant and lattice structure, it is reasonable to ex-
pect continuity of bonding across the interface.
Thirdly, problems associated with alloy systems,
such as GaAs-Al,Ga,.,As where site occupation
(Ga or Al) is random, do not arise, Finally, po-
tentials for Ga, Ge, and As are known with which
acceptable self-consistent bulk band structures
and self-consistent atomic term values have been
calculated. These potentials, with no adjustment,
are used in the present work. There is, however,
no a priori way to know the detailed atomic geom-
etry at the interface; and so in this first work,

we shall explore the electronic structure of the
simplest plausible geometry, the unreconstructed
interface. Within this geometry, we shall consid-
er two limiting cases, one where tetrahedral bond
angles are preserved and the other where they
are altered to allow the interface bond to lengthen
by an amount suggested by the covalent radii of
the atoms involved.

The technique used to carry out this calculation
is that developed by Appelbaum and Hamann? for
performing self-consistent calculations of semi-
conductor surfaces. One feature of the scheme
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