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Treating the radiation field as a first-order perturbation, Briggs and Dettmann recent-
ly studied radiative capture. The cross section, calculated approximately, depended on
the frame of reference chosen. By use of natural nonrelativistic limit, it is shown here
that if the approximate initial and final unperturbed wave functions are orthogonal~s
the exact ones are—then Galilean invariance holds; otherwise, Galilean invariance is,
in general, invalidated because of spurious radiation from the center of mass of the sys-
tem.

We will here be concerned with a cross section
Ao, ~ (obtained, for a fixed initial state, by inte-
grating over some set of final state) associated
with radiative capture or its inverse [an example
being the three-body case A+(B+C) =(A+B) +C
+y], or radiative recombination or its inverse
[an example being the two-body case A+B =(A
+B) +y]. Like the nonradiative cross se tion,

d will be Lorentz-invariant in a fully relativ-
istic treatment. However, the particles (that is,
those with nonzero rest ma. ss) can often be ac-
curately described by the nonrelativistic Galilean-
invariant Schrodinger equation, and so the ques-
tion naturally arises as to whether, in the non-
relativistic limit, the radiative cross section is
Galilean-invariant. The difficulty, of course,
lies in the presence of the photon, which is de-
fined by the Lorentz-invariant (not Galilean-in-
variant) Maxwell equations. The question is real-
ly whether there is a sense in which the photon
can sensibly be treated nonrelativistically. In the
problems under consideration we can think of the
energy E

&
of the photon in any given frame as in-

dependent of c; E
&

is the difference between the
initial and final energies of the particles, ener-
gies which have a well-defined nonrelativistic
limit. The wave number k =E&/Rc of the photon
therefore vanishes as c -~, and in the interaction
of the photon with the particles we can set the
photon momentum Sk equal to zero, that is, we
make the dipole approximation. (Actually, we do
not set k equal to zero until after the center-of-
mass coordinate has been integrated over, since
k appears multiplied by this coordinate, which is
unbounded. ) Note that since the incident systems
[A and B, or A and (B+C), for example] have all
possible relative orbital angular momenta, dipole

radiation is always possible. It is consistent with
the dipole approximation to neglect, under a
transformation of frames, the Doppler shift in
the frequency and the change in the polarization
vector of the photon. We might expect that with
these approximations the cross section is Gali-
lean-invariant.

The interaction H;„, of the particles with the
radiation field will throughout be treated as a
first-order perturbation; H;„, appears as an op-
erator in a matrix element, but. has no influence
on the wave functions. The wave functions are
taken to be the exact solutions of the (nonrelativ-
istic) Schrodinger equation, and H;„, is taken to
be that appropriate to the interaction of radiation
with nonrelativistic particles. We will refer to
the above approximation as the nonrelativistic
first-order perturbation (NF) approximation, and
will denote the radiative cross section obtained
in that approximation by 40,~ . The NF cross
section obtained by using approximate wave func-
tions will be denoted by 60,~

Recently, Briggs and Dettmann' investigated
the form of Aa„d for the radiative capture of an
electron by a bare nucleus incident at an asymp-
totically high velocity on a hydrogenlike ion or
atom. They found that the NF approximation,
with the wave functions determined in the first
Born approximation, gave the correct asymptotic
form for Ao, ~ when applied in the frame of the
projectile but the incorrect asymptotic form when
applied in the frame of the target. The purpose
of this Comment is twofold: First, to give the
reason (which is appa, rently not well known) for
the frame dependence of ho, ~ in the circum-
stance just indicated; and, second, to indicate
the conditions under which Ao, ~ and Ao, z are
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Galilean-invariant.
We begin by discussing the radiative recombina-

tion process m, +m, -(m, +m, ) +y. We denote the
particles by their masses, and for simplicity as-
sume them to be spinless, The charges are taken
to be q, and q» with at least one of the charges
nonzero since it must be possible to radiate a
photon; there may be a non-Coulombic interac-
tion between the two particles. I.et x, and x, be
the particle coordinates relative to some arbi-

trary origin 0; and let x =—x, -x, and X, respec-
tively, be the relative and center-of-mass (c.m. )

coordinates. Let p, and p, be the momentum op-
erators of the particles; and let p and P be the
relative and c.m. momentum operators. Let A.

denote the polarization vector of the field. By
omitting terms associated with absorption, which
do not contribute to the process under considera-
tion, H;„, becomes, in an inertial frame whose
origin is 0, the operator

H;„,=au"'X Q,q, (p, /m, ) exp(-ik x) =a+ '"exp(-ik X)Q,X B;,

where i is to be summed over 1 and 2 and where

B,= q, (P/M -p/m, ) exp[i(m, /M}k x],
B =q,(P/M+p/m, ) exp[-i(m, /M)k x].

(1a}

(Ib)

(lc)

Here, M—=m, +m, is the total mass of the system, and a is a constant. The primary point of interest is
that H;„, depends not only on the relative momentum p but also on the c.m. momentum P, that is, that

H;„, is not Galilean-invariant. The exact initial and final wave functions of the system are

exp(iK,. ~ X)4',.(x) and exp(iKf .X)4&(x), (2)

where SK, and RK& are, respectively, the initial and final c.m. momenta, and where 4,(x) and 4&(x) are,
respectively, the exact initial continuum and final bound-state wave functions that describe the internal
motion. The matrix element of H;„„ taken between the wave functions of Eq. (2), is

(H, „,)~;=«u "'(2~) 5(K;-k-Kg)SR,

where, with u =8K;/M the initial velocity of the center-of-mass relative to 0,

%=X u(4&i (q, exp[i(m, /M)k. x] +q, exp[-i(m, /M)k x]j i 4)
+X (4&i ((q2/m2) exp[ i(m,-/M)k x]-(q, /m, ) exp[i(m2/M)k x])pi 4,). (3)

In arriving at this form, we have used A. k =0. Note that we can replace k by the Galilean-invariant
vector K,. -K&. At this point we make the dipole approximation, that is, we set k equal to zero. With

Q =q, +q, denoting the total charge of the system, we arrive at

(H;„,)„=«u "'(2~)'&(K~-K;)X [Qu&4f i 4;&+(q,/m, -q, /m, )(4&ipse 4, &].

At first sight, (H;„,)&,, and hence 4v„d, ap-
pear to depend on u. The term that contains u

arises from the center-of-mass current operator.
However, noting that in the dipole approximation
the center of mass does not recoil, the current
generated by the center of mass is constant in
time and therefore cannot radiate. The u term
should therefore be zero. This term is, in fact,
zero, since 4; and 4f are eigenfunctions of the
same Hamiltonian with different energy eigen-
values and are therefore orthogonal. ' The rele-
vant entity in the evaluation of the radiative cross
section is therefore &u

"'X (4f i pi 4,.). Since p is
a relative momentum, and since 4,- and 4f de-
pend only on the relative coordinate x, the quan-
tity (4& i p i 4,) is invariant under a Galilean trans-

formation. Therefore, if we make the dipole ap-
proximation, and neglect the Doppler shift in ~
and the change in A. , 40„d is independent of u,
and hence of the inertial frame used, so that it is
Galilean-invariant. Suppose, however, that the
exact wave functions 4, and 4& are replaced by
approximations 4, and 4&. If (4fi 4';) is not zero,
then, in general, the u term is no longer zero,
the center of mass radiates spuriously and ho«
is not Galilean-invariant. An exception arises
when @=0, for then the system is electrically neu-
tral and the center of mass cannot generate any
current so that the possibility of spurious radia-
tion does not arise. However, if (4&i 4,) g0 and

Q w 0, the coefficient of u is nonzero and, in or-
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der to eliminate spurious radiation and avoid ob-
taining a completely erroneous result, one must
either neglect the term in u or work in the frame
in which there is no center-of-mass current, that
is, in the center-of-mass frame, where u =0.

Of the various approximations, the Born ap-
proximation to be denoted by the subscript B, is
a particularly interesting one. Ke use an arbi-
trary approximation 4& for the bound-state wave
function cf, but we replace the continuum wave
function 4, by the plane wave 4';8 =exp(i pv x/5),
where p, is the reduced mass and v is the relative
velocity. The expression in square brackets in
Eq. (4) then becomes D~(4&~ C', z), where D, -=Qu

+[(q,m, -q,m, )/M] v. In this approximation,
(H;„,)z,. 8, and hence ho', z 8, vanish identically
in the frame in which Da =0-—a strong indication
that some care is required in the choice of frame.
Now the radiative capture process Ms+(m+M„)
-(Ms+m) +M„+y, where an electron of mass m
and charge e is initially bound to a nucleus of
mass M„and charge —Z„e and is captured by a
nucleus of mass M~ and charge Z~e, is essential-
ly the radiative recombination process M~+ nz

-(M~+m)+y at asymptotically high velocities;
the binding energy of m and M„and the distribu-
tion of their initial relative momentum can be ne-
glected and therefore M„plays no significant
role. ' Setting m, =M» q, = —Z~e, m~=m, and q,
= e, and neglecting terms of order m/M~, D8 be-
comes D8= e[(1 —Z~)u+v]. Now Briggs and Dett-
man use the Born approximation for the radiative
capture process under consideration, but since
they omit the currents generated by the nuclei no
terms in Z~ appear. ' In this further approxima-
tion, and to the extent that the radiative-recombi-
nation and radiative-capture processes are equiv-
alent, the capture cross section vanishes for u
= -v, that is, in the lab frame, in agreement with
their result. '

For the first time, we now drop the assumption
that the photon carries no momentum, but we
continue to make the NF approximation. Relativ-
istic corrections are of order 1/c' so it would be
inconsistent to include corrections beyond first
order in 1/c due to the photon momentum. If pho-
ton momentum corrections are included only to
first order in 1/c, the total radiative-recombina-
tion cross section e, & remains Galilean-invar-
iant, and the approximation o, ~ to o, & re-
mains Galilean-invariant if (C &~4,) = 0 and/or Q
=0, since correction terms of order 1/c vanish
upon integration over all directions of emission,
(Note that when we ignored corrections of order

1/c, ho, ~ and b.o,~ were Galilean-invariant
for any fixed A. and for integration over any range
of the angle 8 at which the photon is emitted; we
did not require summation over A, and integration
over all 8 to achieve Galilean invariance. )

It is a simple matter to extend the above argu-
ment concerning Galilean invariance to the radia-
tive-capture process M~+(m+M„) -(M~+m) +M„
+y when the initial binding of m and M„does play
a role. No spurious radiation is produced, and
the cross section is Galilean-invariant, provided
that the initial and final internal wave functions
(exact or approximate) of (m+M„+M~} are ortho-
gonal. Note that approximate internal wave func-
tions that are chosen to be exact solutions of the
coupled-state (or close-coupling) equations are
orthogonal, since the solutions of these equations
are eigenfunctions, with different energy eigen-
values, of the same given (model) Hermitian Ham-
iltonian.

It may be of interest to comment on the fact
that the nonrelativistic limit of H;„„ in the pres-
ent context, is the dipole approximation. The
point, of course, is that since the electromag-
netic field is a vector field, and since H~„, is a
scalar, the particle-dependent factors are vec-
tors (p, and p„or p and P), allowing a change of
one unit of angular momentum when the exponen-
tials are set equal to unity —this is just the in-
trinsic spin of the photon. To get a change of
more than one unit of angular momentum, the
exponentials cannot be set equal to unity since
the photon must have orbital angular momentum
and therefore linear momentum. ' This point is
well known but it is not usually stated as the "non-
relativistic limit of the photon. " (For quadrupole
or higher-multipole processes, we do not let c-~ but simply retain the leading term in 1/c;
b.o, ~" will then again be Galilean-invariant. )

Note that the entire discussion above can be ex-
tended to the impact-parameter approximation in
which the heavy nuclei are treated as classical
particles. The condition for Galilean invariance
becomes

I= f exp(f(dt)(C g(t) ~
4;(t))df =

Oq

the spatial integration is now only over the coor-
dinates of those particles which are being treated
quantum mechanically. (When all of the particles
are treated quantum mechanically, as in the dis-
cussion above, the time dependence of the wave
functions is oscillatory and the time integration
can be performed immediately to produce an en-
ergy-conserving 5 function. Vfith the time depen-
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dence factored out of the wave functions, the con-
dition for I to vanish is that (4&~ 4,. ) vanish, which
is the same condition as above. ) Energy is not
conserved within the impact-parameter approxi-
mation, and 4~(t) and 4,(t) a. re not orthogonal.
However, since ~ is nonzero, I will vanish if
(4»(t) ~ 4,(t)) is independent of the 'time t, which it
is since 4,(t) and 4»(t) satisfy a time-dependent
Schrlinger equation whose Hamiltonian is Her-
mitian. This remains true if 4,.(t) and 4»(t) are
replaced by approximate wave functions that sat-
isfy the time-dependent coupled-state equations,
since this amounts to replacing the true Hamil-
tonian by a model Hamiltonian which is also Her-
mitian. The fact that Galilean invariance will be
preserved if (4&(t) (4;(t)) is constant in time has
been noted previously by Briggs and Dettmann. '

All of the remarks above should be applicable
to bremstrahlung processes. Furthermore, for
radiative processes which have a classical mean-

ing, the cross section, calculated classically,
would be expected to have a Galilean-invariant
nonrelativistic limit.
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New data on a higher concentration ( 1') of Mn in Cu than that studied by MacLaugh»u
and Alloul exhibit fundamentally different behavior for &' «&', , where T, 10 K is the
"spin-glass" transition temperature. In particular, we find evidence for a "frozen" con-
figuration of Mn spins at &'=1.6 and 4.2 K, in better accord with the muon-precession
studies of Murnick et al.

Recently MacLaughlin and Alloul' (MA) pub-
lished a study of "Cu NMR linewidths and relaxa-
tion times in dilute (0.1-0.4/o) CuMn alloys at
temperatures in the vicinity of the spin-glass or-
dering temperature T,. Curiously anomalous re-
sults were reported by MA. The inhomogeneous
linewidth showed no detectable change at T„in

contrast with the dramatic increase exhibited in
the muon-precession experiments of Murnick,
Fiory, and Kossler. ~ Furthermore, even at the
lowest temperatures studied (-1.5 Kj, the ob-
served "C~ linewidths scaled with applied field
IIO to within experimental error. Thus, there
was no evidence for a "frozen-in" state of Mn


