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Stability of the runaway electrons in tokamaks is analyzed. The distinction between
high-density and low-density operation of tokamak discharges is interpreted in terms of
the stability condition obtained. In the unstable case, the temporal evolution of the distri-
bution function of the runaway electron~ is obtained by solving the quasilinear equation.
Time-dependent synchrotron emission from the runaway electrons is calculated,

Recent measurements of cyclotron radiation from low-density tokamak plasmas have shown signifi-
cantly nonthermal properties' ': The radiation intensity is more than an order of magnitude above the
thermal level expected from the measured temperature, with a broad frequency spectrum having min-
ima at the gyroharmonics; the radiation level is nonsteady with sudden (s 10 @sec) increases in inten-
sity, correlated with loop-voltage spikes, with bursts of x rays and of radiation from &~, to &~„and
with the ion heating. In this Letter, we attempt to interpret this enhanced radiation as synchrotron
emission by the runaway electrons. '

A specific distribution function of the runaway electrons is obtained by solving the Fokker-Planck
equation in the steady state, and this distribution is then used as the unperturbed runaway distribution
for stability analysis. In the unstable region, the time-dependent quasilinear equation is solved ana-
lytically to obtain the nonlinear evolution of the runaway distribution. With this time-dependent distri-
bution function of the runaway electrons, we calculate the time evolution of the spectrum of their syn-
chrotron emission, including the effect of reabsorption by the background plasma.

We solve the Fokker-Planck equation in the runaway region where v„&v, = (E,/E)'t'v„v, = (2T, /m)' ',
E, =e InA/Xo', and go' =T, /4mne'. Included is a loss term of the form -v„f/ vr„saa model to ac-
count for the loss of high-energy electrons caused by the imperfect magnetic surfaces, ' where ~, ' is
the loss rate of particles with v [~&v~. To have a steady state, a source at low energy is introduced to
maintain a constant rate, y„of runaway production given by' y, = 0.35v, (E/E, ) "'exp(- [(2E,/E)'~'
+E,/4E]], where v, is the electron-electron collision frequency. The Fokker-Planck equation in the
runaway region' is then solved for v ~~»v, to obtain the following steady-state solution
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The normalization is so chosen that the loss of the runaways is balanced by the runaway production,
i.e. , hn/~ =n,y„where An/n, is the density ratio of the runaways to the bulk thermal electrons, and v

is the average life time of runaway electrons. Moreover, v~ and v„are the velocity components per-
pendicular and parallel to the electric field, and v, =[Ev,~,/E, ]'t'v~ is the effective cutoff velocity.
Typically, for low-density discharges, the observed energy of the runaways is cut off at about 200 keV,
corresponding to a value of v, /v, = 12 for a bulk electron temperature of 0.7 keV. Note that the effec-
tive perpendicular temperature of the runaways is enhanced by a, factor (E,/E) ln[Ev~~'/E, v, '] with the
logarithmic factor typically about 2, and is an order of magnitude less than the parallel temperature.

For the stability analysis, we choose, for simplicity, the unperturbed distribution to be a composite
of a bulk of Maxwellian electrons v „~v,= v, (EO/E)'" and a runaway tail given by @q. (1) for

v ~~ &v, in
a magnetic field aligned with the inductive electric field. The anisotropy of the runaway distribution
can then drive the plasma wave unstable through the anomalous cyclotron resonance +,+0 =k„v~,.' This
instability was first qualitatively examined by Kadomtsev and Pogutse and its quasilinear effects have
been qualitatively studied by Shapiro and Shevchenko. ' Here we use the explicit runaway distribution
given by (1) to obtain a definite stability boundary and the quasilinear evolution of the distribution need-
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ed for the calculation of the synchrotron radiation. The frequency of the plasma wave in a strong mag-
netic field is u&, =k„o!~/k«Q, where v~= (4wne'/m)"' and Q =eB/mc. The growth rate is given in
terms of the imaginary part of the dielectric function given by"

(d& 2'tl' (d& k~v~ nQ 8 8
+~II fo (2)

Vg BV j BV
ll t]ll=fu~-nO]gll

where only n=0, —1 terms are necessary for (dg+Q&kpvc&«u, +2Q. Note that the growth term (n= —1)
is significant only if (&@~+Q)/kg& Vo or eciuivalently kXD a (v, /v, )(Q/~A). The Landau damping term (n
=0) depends strongly on the distribution (i.e. , Maxwellian or runaway) at the phase velocity cOA/ki typ-
ically in the runaway region for E/E, &0.1. The stability boundary shown in Fig. 1 is obtained for a
given resonant velocity v„= (&u„+Q)/k„& v, by setting y„=0. In tokamaks, E =Il j =cia(Vx B~)/4m, where
rI is the resistivity and B~ is the poloidal magnetic field. Thus, in terms of tokamak parameters, E/
E, = 0.38(ri/res)(l/Rq)(c'/v, )(Q/&u~'), where ris is the Spitzer resistivity, q =rBr/RB~ is the safety factor,
typically about unity near the axis, and r and R are the minor and major radii, respectively. The vari-
ation of E/E, with density traces out a curve. of tokamak operation with changing density but fixed mag-
netic field as shown also in Fig. 1. Interestingly it intersects the stability boundary twice. In the high-
density region (1&&u~/Q &0.4, E/E, &0.03) it is a weak instability due to the very small number of the
runaway electrons at low E/E„and therefore it has little effect on the low-harmonic cyclotron radia-
tion and macroscopic plasma behavior. The excited plasma waves, however, can be transformed into
electromagnetic waves by a variety of mechanisms and could therefore be relevant to the observed
peak at v~. In the low-density, high-E-field region (&u~/Q &0.3, E/E, &0.1) the runaways carry a sub-
stantial portion of the energy and current with a few percent concentration, An/n. The instability is a
strong one with growth rate typically (hn/n)(~~/Q)'& ~. The turbulent pitch-angle scattering of the run-
away electrons by the unstable waves then enhances their perpendicular energy at the expense of their
parallel energy, thereby causing enhanced synchrotron radiation.
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FEG. 1. Stability boundary and tokamak operation
curve. The solid line is the stability boundary for
waves resonating with electrons of velocity vll= 11v,
(the most unstable mode) in a plasma with a tempera-
ture of 0.6 keV. The broken line is the tokamak opera-
tion curve with varying density but constant magnetic
field B=40 kG, major radius P = 60 cm and q = 1. The
resistivity of the plasma is taken to be Spitzer resistiv-
ity. The runaway lifetime is taken to be the free-
streaming time from v, to the cutoff velocity v0=18v
The fraction of the runaways in the high- and low-den-
sity unstable regions, Dn/n, is of the order 10 and
10 ~, respectively.
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FIG. 2. Spectrum of synchrotron radiation by the un-
stable runaway electrons. Radiation is generated by
both background electrons and runaways, which concen-
trate within 5 cm near the minor axis. Absorption is
due to background only. A.z is a natural time scale of
evolution of the distribution as discussed in the text.
1~ is in CGS units. Observation is made vertically. B
=40 kG, n=5x 10 cm, E, /Eo = 0.13, Z (f = 1.

163



VOLUME 38, NUMBER 4 PHYSICAL REVIEW LETTERS 24 JANUARY 1977

To obtain the temporal evolution of the distribution function of the runaway electrons, we solve the
time-dependent quasilinear equation analytically, using the unperturbed distribution Eq. (1) as the ini-
tial function. The'quasilinear equation for the runaways is approximately"

Bf(v~~, v~ t) 1 8 1 Bf
Bt 'U& BVj V& BV&

where

D =8m e Q m fd'kc„k 5((u+Q-k pv(()4, [kgv j /Qj,

(3)

e~ =~E„~ /871 is the electrostatic energy, and we have neglected terms involving the parallel derivative
because 8f,/Bv„«8 f,/Bv~ for the most part of the initial runaway distribution. We consider the case
of strong magnetic field so that the unstable waves have b, =k~'XD'(~~/Q)'(E, /E) ln(E,v„'/Ev, ') «1. The
diffusion coefficient can then be written as

D = (2p e v ~ /m )f d k (k ~ /k )eg, (t )5 ((d + Q - k g
v

~~ ),

upon expanding the Bessel function. Because of the explicit dependence of D on v~', we may introduce
a new time variable w defined as

~ = (2~'e'/m') f dt ' f d'k(kA'/k')e, (t')8(~, +Q -kIvp),

so that Eq. (3) becomes simply a diffusion equation: Bf/Bv=v~ (8/Bv~)(v~Bf/BvA), with initial value
given by Eq. (1). The solution to the above equation can be readily obtained, for v,~& (Q/~~)(E, /E)'~'v„
as

f, exp[-A.v~'(4Xw+1) '-v„'/v, ']
(4~~+1) ln(Ev ~~')

where f, = 2nn(E/E, )/m~'v, 'v„E and v~~, v~ are dimensionless in units of E, and v„respectively, and
A, =E/ln(Ev„). Note that the mean perpendicular energy increases linearly in v because of pitch-angle
scattering, until near isotropy is reached and the wa, ves become damped. To express f in terms of
the real time t, we must solve the following evolutionary equations for the fields. Because of the small
radial dimension, L, of the runaway region, "the wave convection out of the unstable zone with group
velocity v, is an effective saturation mechanism, yielding e~=,E exp(2y, L/v, ). Substituting this ex-
pression into Eq. (4) and noting the relatively narrow band of unstable modes centered around g= 2 "'
x (k&D) '= 3, (k„/k) = p~ 0.2, we may therefore obtain approximately

nXD K —2 Ly„n~D 4 ) ~ Lexp,
)

- ~ exp —4x 10 '—
where ~~2. A simple estimate shows that for I./AD=10', t™1-10psec for w-X ', which is the time
scale for the perpendicular energy to increase a few times, and also approximately the time scale for
saturation of the instability.

Having obtained the runaway distribution and its temporal evolution, the time-dependent synchrotron
radiation by the runaway electrons resonantly interacting with plasma waves can be calculated direct-
ly from the Schott- Trubnikov formula. " The total power emitted into the ~th harmonic extraordinary
modes perpendicular to the magnetic field is found to be

Kc'/v, ' 2Vc'/v, '
x ~1+ ' +, ', I -I

m (4F~+ 1) m'(4m~+ 1)' (6)

where I, I, have argument (m4Ã +17)(2''/v, ') ', and 5 is the fraction of runaways that are reso-
nant, approximately 3v, /v, ~ —, for typical parameters. The temporal behavior of (dp/dQ)„~~, can in-
crease a few times in a time scale of the order of microseconds, which was indeed observed experi-
mentally. The spectrum of the radiation is calculated including the effect of reabsorption by the back-
ground plasma, as shown in Fig. 2.
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Measurements are reported of NMR linewidth, 1/T2, for He atoms adsorbed on Gra-
foil at 1 K for various quantities of gas adsorbed. The data show three well-defined re-
gions corresponding to a two-dimensional fluid, a two-dimensional solid, and a region
where a second layer of adsorbed atoms is forming. A sharp minimum in T2 gives a pre-
cise indication of monolayer completion. A theory for tunneling in the two-dimensional
solid is presented.

Specific-heat and isotherm data for samples of
inert gases adsorbed on graphite give evidence of
unusual homogeneity of the adatom-substrate po-
tential. "Researchers from the University of
Washington' have developed a phase diagram for
helium adsorbed on Grafoil' a, convenient form
of graphite having a large surface area per unit
mass. NMR studies of adsorbed 'He atoms are
capable of supplementi. ng thermal data by giving
new information about the dynamical state of the

adsorbate. Previous' ' NMR studies of 'He ad-
sorbed on graphite have shown linewidth changes
and susceptibility data consistent with the pro-
posed solid-liquid transition on the phase dia-
gram, although there is disagreement over the
evidence for the "registry" phase where 'He
atoms are located in positions determined by the
carbon atoms in the substrate.

We report here detailed 'He NMR linewidth
measurements (i.e., l/T2} taken at I K as a func-


