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separated by y =2m/k, ."'" Substituting the meas-
ured values of v, (k) =0.1~~„+„&„'/4moT,,
=0.04, v „k =-', co~, , we obtain (1/T, ,)(d T/dt)
=0.009&v~„corresponding to v„„„.„g =20 p, sec, in
agreement with Fig. 3.

To check the guasilinear heating rate, Fig. 4(a)
presents the T, increase versus time for vari-
ous saturated wave energies. As seen in Fig.
4(b), the ion-heating rate is proportional to the
saturated wave energy, quantitatively confirming
the quasilinear relation with v, = constant. Fur-
thermore, since we have observed a linear rela-
tion between the saturated wave energy and the
radial voltage drop (pumping energy), the ion
heating rate is proportional to the power input
through the E&B motion of the electrons. A sim-
ilar result is obtained for the electron heating
rate in parametrically driven instabilities. "
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A new method that includes Iong-range interactions is described and used to compute
the site-occupancy correlation in a one-dimensional ionic conductor. The method is ap-
plied to hollandite, for which the ions move within independent channels. Through this
analysis, we deduce specific information about the interionic potential from experimental
data on cationic order. Because of the pecu1iar screening provided by this material, the
potential between mobile ions decays quickly for the first few lattice sites and has only
a weak Coulomb tail.

One dimensionality often plays a special role
in physical systems. This is the case for ions
moving within channels and occupying a fraction p
of the available sites. The self-diffusion coeffi-
cient is zero (for an infinite system) but not the
dc conductivity. Furthermore, in one dimension
the correlation is very sensitive to details of the

interionic potential. '
In this Letter, we investigate the general rela-

tionship between long-range interionic potentials
and the site-occupancy correlation and show to
what extent information about the effective inter-
ionic potential may be extracted from experi-
mental data about the state of order. As an ap-
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plication we will consider the ionic conductor
KI5,Mgo»Ti, »O„(hoiiandite)' in which the mo-
bile K' ions move within channels and occupy 77%
of the available sites. A recent analysis of dif-
fuse x-ray scattering shows a strong correlation
between mobile ions. '

The problem we study is the following: Given a
channel consisting of N sites with pN ions (p &1),
what is the probability to find n consecutive oc-
cupied sites 'P We assume that the ion-ion inter-
action is given by a two-body electrostatic poten-
tial

V(z,, ) =q'/ez. ..
where q is the charge and e the dielectric con-
stant. No short-range repulsion is included be-
cause in a conducting channel the distance be-
tween sites a, is larger than the ionic diameter
(in hollandite, ao= 2.9 A and 2RK+ =2.66 A). Since
generally p& ~ and we assume a uniformly charged
background to ensure charge neutrality, it is con-
venient to look at the vacancies as interacting
particles. We then define an array A„(with as-
sociated probability P„) as a set of sites that
starting from a vacancy includes aQ the ions up
to the next vacancy (excluded). (See Fig. 1.)

For an infinite system there is no analytical
solution if the interaction is long ranged. In or-
der to test possible approximations, we have
studied systems of finite size and periodic bound-
ary conditions on a computer (including all pos-
sible configurations with their associated Boltz-
mann factor). ' As a result, it became evident
that the exactly solvable case of interaction be-
tween nearest-neighbor sites' only yields, in
most cases, an extremely poor approximation to
the true state of order.

When we use the concept of arrays, the sim-
plest approximation consists in allowing each
vacancy to interact only with the preceding and
the following vacancy. We thus associate to each

where p. is the chemical potential corresponding
to an occupied site [we remember that an array
of length n has n-1 occupied sites (see Fig. 1)],
V(n) is the interaction between two vacancies at
a distance of n sites, and P=1/kT. The normal-
ization of P'„will be achieved through a condition
for the chemical potential p, [see Eq. (4)j. The
average number of ions per array is given by

where n* is the longest array considered, If the
density of ions p is fixed, as in our case, the
chemical potential p. is determined by the rela-
tion

n/(n+1) = p. (4)

One can improve on this approximation by in-
cluding the interactions between nearest arrays
(V» in Fig. 2). This is done by introducing a
transfer matrix between the ith and (i+ 1)th ar-
ray:

Q(n, , n,.„)= exp[(n, -1)Pp, ]

xexp(-P[V(n, . ) + V(n, +n, „)j).

array the energy corresponding to the interaction
between the vacancy at the head of the array and
that one immediately following the array. We
call this approximation —which includes the V,
and V, in Fig, 2, but not such terms as V»—the
independent-array approximation. Because it
does not include any interaction between different
arrays, the succession of the arrays within a
channel is irrelevant. Contrary to the nearest-
neighboring-sites approximation, the indepen-
dent-array approximation already provides good
results compared with exact numerical studies
for finite systems. We can then directly write
the probability for an array A„ to occur as

P„=exp[(n-1)Pp, ] exp[-PV(n)],
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FIG. 1. Definition of an array A„as an empty site
followed by (n- 1) occupied sites before the next vacan-
cy occurs.

FJG. 2. The independent-array approximation inc1udes
g, and V2 but neglects V&2 t'since p& 2 it is more practi-
cal to think at the vacancies as interacting).
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and

Z„= Q Q(n, n').

For Coulomb-type interactions the inclusion of
the terms of type V» (Fig. 2) modifies the dis-
tribution P„by only a few percent with respect
to the independent-array approximation. In the
following analysis of the correlation in hollandite,
we shall therefore neglect the V,, terms.

In the composition K,„Mg„Tip Ozg hollandite
consists of a framework of (Ti, Mg)O, octahedra
forming independent parallel channels, " Within
each channel there is a string of equivalent sites
whose fractional occupancy is equal to x. The
potassium ions are highly mobile within the chan-
nels, although long-range motion appears to be
inhibited by lattice defects and impurities.

As shown in Ref. 3, the diffuse x-ray scattering
exhibits the existence of two types of short-range
order: (a) a displacement of the ions adjacent to
a vacancy and (b) a nonrandom distribution of the
vacancies. Whereas (a) mainly governs the in-
tensities of the diffuse planes, (b) primarily de-
termines the width of those planes.

The analysis of the experimental data in terms
of our model consists of computing the diffuse
scattering corresponding to a given distribution
of probabilities P„ including the displacements of
ions neighboring a vacancy as determined in Ref.
3, and a comparison of this scattering with the
experimental data. ' Different strengths of effec-
tive interionic interaction mainly result in differ-
ent widths of the diffuse structure so that the ac-
tual fitting reduces to a comparison of the widths
of the two most prominent diffuse planes.

For Coulomb interaction between the mobile
ions, the experimental widths of the diffuse
planes can be reproduced with an effective di-
electric constant c,ff-6. The corresponding I'„
distribution is shown in Fig. 3. This dielectric
constant has to be compared to that given by the
framework polarizability, i.e., the total polar-

FIG. 3. Probability distributions P„ for arrays of
length z as given by independent-array approximation
tzqs. (2)-(4)]; 0, no interactions; *, interaction only
between nearest sites; 4, Coulomb interaction with

~~~ = 6; ~, interaction given by Eq. (9) with g, =2,
=100, and R =4.3 A. Note that with the interaction only
between nearest sites (*) it is not possible to obtain
even the qualitative behavior (e or 6) corresponding to
the x-ray data.

izability of hollandite minus the displaeive con-
tribution of the mobile ions. There are two ex-
perimental values of the dielectric constant of
hollandite available: Singer et al. ' investigated
the dielectric response of polycrystalline hol-
landite. At frequencies above the dispersion
caused by the mobility of the eations, they find
an e of about 100; from the far-ir reflectivity'
of single-crystal hollandite (below the reststrahl-
en resonances) one may deduce values of 126
and 36, respectively, for the dielectric constants
parallel and perpendicular to the channel axis.
The-experimental values of e are thus in severe
disagreement with our e, fq of 6. Furthermore by
assuming a sinusoidal host-lattice potential of
total amplitude 2VO, our effective Coulomb poten-
tial requires 2V, = 0,06 eV in order to produce
the observed displacements of 24/p for an ion near
a vacancy. ' This is an unreasonably low value for
a barrier height along a diffusion path, '0"

In an improved model, we take into account that
the exceptionally high dielectric constant of the
framework (originating from the high polarizabil-
ity of the TiO, octahedra) is only effective out-
wards from the first Ti shell around a channel.
Within the channel, the effective dielectric con-
stant is very much lower and determined by the
electronic polarizability of potassium and oxygen
ions. We approximate this situation by a dielec-
tric cylinder of radius 8, an outside dielectric
constant e„and an inside value of e, . The po-
tential y(z) on the z axis of the cylinder corre-
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sponding to a charge q in z =0 is

y(z) = — 1-G —', —Z
e, z e, 'R e(z)z (9)

The second equation in (9) is to be understood as
a definition of the z -dependent e shown in Fig, 4,
G describes the influence of the framework on the
potential and is given by the Fourier integral

G(a, &) =(2/n)5 dxsin(&)x 'g(n, x), (10)

with

g(n, x) = (ci -1)x2[K,'(x) iK, '(x)1

x[1~(~ -1)f,(x)xK,(x)1 ',

where I„and K„are the modified Bessel functions
of order n. The asymptotic behavior of y(z) for
large z is determined by g(o., 0) = 1 n' and le-ads
to f(~) = fg,

To obtain (9)-(11), we start with a finite charge
density p(z) inside a cylinder of Radius R &R.
The Poisson equation is solved by Fourier trans-
formation with respect to z so that

( '8+ r '8„k')-j(r,-k)

= -(4w/e, )p(k) 8(R' -r). (i2)

The solution is

y(r, k) = a(k)Io(kr) + b(k)KO(kr)

+(4/s, k') p(k) e(R' r), - (13)

with constants of integration a and b which are
different in each of the regions r &R', R' &r &R,

I l I I t

2 3 4 5 6 7 n

FIG. 4. Screening function 1/e(z) vs distance (ex-
pressers in units of intersite distance ao) as given by
Eq. (9) with e; =2, e, =100, and R =4.3 A. This is the
screening for the interaction between K+ ions in hollan-
dite. The dashed line corresponds to Coulomb interac-
tion with g~fg = 6.

and r &R. They are determined by the regularity
conditions of cp in r=0, R', R, and . Retrans-
forming (13) for r = 0 and evaluating the point-
charge limit lead to (9).

With use of the interaction potential given by
Eq. (9) with the values e;=2 (typical value for
ionic crystals" due to the electronic polarizabil-
ity of potassium and oxygen ions) and e, = 100
(polarizability of the Tio, octaedra), the experi
mental widths of the diffuse planes can be repro-
duced with R =4.3 A. This value corresponds to
slightly more than the distance to the nearest Ti
ions. (The fit is rather insensitive to + 20% vari-
ations in e; and e, .) For this potential the inde-
pendent-array approximation is even better than
for the Coulomb case. The inclusion of the terms
V» (Fig. 2) modifies the P„values by only 1-2%.
The function 1/e(z) given by these parameters is
shown in Fig. 4, and the corresponding array dis-
tribution P„ in Fig. 3. The displacement of 24%
of an ion near a vacancy corresponds, with this
new interaction potential, to a sinusoidal host-
lattice potential of amplitude 2V, =0.2 eV. This
is a typical value for barrier heights in super-
ionic conductors. ""

We conclude, therefore, that the space-depen-
dent dielectric function given in Fig. 4 character-
izes quantitatively the potential acting between
the K' ions in hollandite.
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