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7The choice of plottirg the half-maximum is arbitrary.
Plots similar to those shown in Fig. 2 are obtained for
the change in positions of quarter- (three-quarter-)
maximum except that ID and nD shift to lower (higher)
values.

The calculated plasma curve is shifted aIong the en-
ergy axis to obtain the best fit.
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We have no experimental evidence to support this as-

sumption. However, we find that the exciton lumines-
cence intensity varies 1inearly with I. If the volume oc-
cupied by the excitations at 70-nsec delay varies suffi-
ciently slowly with I and T, deviations from linear be-
havior may introduce effects within the experimental
error bars, Note also that ID and IY are at least 30
times smaller than the laser power used in Ref. 5.
Hence the initial density and expansion rate are con-
siderably smaller. At 70-nsec delay we find that com-
plete thermalization takes place.

' This expression differs from the expressions given
in Refs. 3 and 9 because both electrons and holes contri-
bute to screening.
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A one-dimensional analog of the Kondo lattice is studied by a renormalization-group
technique. Previous mean-field results are shown to be reasonable: The system under-
goes a second-order crossover transition from an antiferromagnetic state to a Kondo-
like state at zero temperature as the spin-conduction-electron coupling is increased.
Estimates are given for critical exponents and the behavior of correlation functions near
the transition.

CeAl„CeAl„andmany rare-earth compounds'
behave anomalously at low temperature either
they do not order magnetically or they have a
very low transition temperature. Several au-
thors' ' attribute this to a Kondo effect. While
the Kondo problem is now solved4 for a single
magnetic impurity, the Kondo-lattice problem
which involves one impurity per cell remains an
open question. In order to investigate the general
properties of this kind of system, Doniach' has
previously introduced a simple one-dimensional
(1D) analog Hamiltonian, the "Kondo necklace":

H =JQ,S,'T, +WQ, (7,"~,„"+~,'T„,'), (l)

where 4 is positive and where S~ and 7; are two
independent sets of Pauli operators [~&"=(,",),
etc.].

In this Hamiltonian the 1D electron gas has been
replaced" by a set of pseudo spins &T& regularly
spaced on an infinite linear lattice.

The general qualitative behavior of this model
may be seen from the weak- and strong-coupling
limits: J/W =0 and ~. For J'=0, it reduces to
the X-F quantum-spin chain, ' which is equivalent
to a 1D spinless Fermi gas with one electron per
atom. ' ' For small J/W, we expect that the S

spins couple antiferromagnetically via the ~ spins,
leading to a ground state of broken symmetry ex-
hibi ting characteristic spin-wave-like excita-
tions. On the other hand, when J/W =~, the sys-
tem reduces to a set of noninteracting singlet-
triplet cells leading to a singlet ground state for
(l) well separated by a gap of 4J from the first
excited states. So, we expect a transition from
a magnetic behavior to a Kondo-like behavior by
increasing the ratio J/W. Within a mean-field
approximation, "this transition occurs at (J/W),
=1. But it is well known that fluctuation effects,
in one dimension, strongly affect the mean-field
results. The purpose of this Letter is to present
a renormalization-group approach to the problem.
Our results confirm the general qualitative fea-
tures of the model previously suggested. "Vile

find a critical value (J/W), =0.4 at which there is
a second-order transition at zero temperature in
which the system crosses over from antiferro-
magnetic to Kondo-like behavior. The critical
indices for this fixed point are estimated and
found to be similar (but not identical) to those
for an Ising chain in a transverse field. The ap-
proach appears to be generalizable to other quan-
tum spin systems.
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The method that we use was proposed to us by
Scalapino, ' who originally used it for the Ising
chain in a transverse field. This method is also
used in some high-energy problems ii The ap
proach is to divide the chain into equal blocks.
The Hamiltonian for one block is solved exactly.
We then rewrite the interaction between adjacent
blocks in terms of single-block eigenstates. We
then consider a new block formed with bvo adja-
cent old blocks and so on. The approximation
consists in selecting only a subset of levels —the

lowest if possible at each step of the iteration.
Our calculations consist of two slightly different
versions of this general scheme. A brief outline
of these methods is presented here; further de-
tails will be given elsewhere. "

The first method deals with initial blocks of two
sites and considers four levels at each iteration.
We replace a block of two sites (four spine) by a
new set of two spins S and & while maintaining the
form of the Hamiltonian. This is made possible
by considering, at step n, the following expres-
sion for the Hamiltonian:

ff (n) (~ (n)Q (& +(n)& -(n)
& -(n)& +(n)) +~ (n)g (& +(n)S -(n)+& -(n)S +(n))

+~ (n) ~~ (S +(n)T -(n)+S -(n)& +(n)) +~ (n)Q (S +(n)S -(n)+S -(n)S +(n)))

J (n)~ g «(n)& «(n) J (n)~ Ig +(n)& - (n) +g
- (n)T +(n)&

where v&'=7;"+i7 &' and similarly for 8&.

Initially we set 8' ' = W, S' ' = 5' "=5' ' =02 g 4
and JII "=J&"=J, and we identify 8~" and ~~"'
with the original spins entering (l). Then, at
each step, we solve the 16&16 matrix represent-
ing the Hamiltonian for a block j of two sites (1,j)
and (2,j). This matrix splits into blocks accord-
ing to the possible eigenvalues of the ~ projection
of the total spin ~' "'=v, ' " +7 ' " +8 ' "'+8 ' "
We consider the two lowest states s ""' and t,'"'"
of energies &,"" and Ep"" of the 6~6 matrix
corresponding to ~'"'=0, and the ground states
t+(n") andt (n ' of energy E ("")=E(n' ) of the
two 4~4 spin-degenerate matrices corresponding
to ~' "'=+1. We then identify the four states s"'",

spine S;" and T " " (one set per block) by set-
ting"

(n+1) 1/~ (n+1) E (n+1) E (n+1) E (n+1))
II +i + + - p

(n+1) 1
(@ (n+1) E (n+1)) (3J, —

Q p

Then, by taking the matrix elements of ~y, ' "',

states, we find that these old operators can be
expressed as linear combinations of the new ones
8 ""' and w,

'""' so that

(7 )() ((. +)("+ )

+L

S21 f $1

where xL"'" and x&"'" are 2&&2 matrices which
can be determined at each step ~. The same
equations hold for T and S . Formulas (4) allow

us to express the original coupling between adja-
cent blocks j and j+1 in terms of the new spins
S&, &, , S~+» and&&, . We recover exactly the
same form as in (2) with new parameters W&(""),.
and we get the following recursion relations:

(n+ j.) gr (n)
j. 1

R(n+j.) (5)

where R "" is the 4~4 matrix transpose of R " '
=ri "'"Sr~ "'" (with(a denoting the tensorial
product).

This first method also allows a calculation of
the correlation functions at T =0. Suppose we
stop the iteration scheme at step n. The ground
state of the original finite chain of 2" sites is then
approximated by the state + "' of bvo spins S,'")

and 7, "'. We can define end-to-end correlation
functions for this finite chain by

(n) 1(T +(0)& „-(o)) @
(n) 1(S +(0)« -(o))

.(6)
(n) 1(& +(0)S -(0)) + (n) 1(S +(0)S „-(0))

where the brackets take the mean value in the s"
ground state. By an iterative use of (4), we get
immediately

6)
Z(n) =g(»g(». ..R(n)

At each step we check thatgz, =gz~g~, and that
g~~ and g«are negative while g~, =g~~ is posi-
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Xss =lim2 gss Xs = lim 2"gs

X7-7- = lim 2"g7-7. ",
as a function of J/W in Fig. 1. Before and after
the transition we can define the critical indices
P for the magnetization, f for the correlation

tive.
The parameters 8'; "), J "), and J ") and the

correlation functions are studied when n- ~ from
(3), (5), and (7). Two different types of behavior
are observed, depending on the ratio J'/W. When
J/W«0. 411, one of the W, "l tends to a nonzero
value while all the other parameters tend to
zero —mve recover in this case a broken-symme-
try ground state. The correlation functions tend
to constant values which have been plotted as a
function of J/W in Fig. 1. In this magnetic re-
gion, -gss" and -g„"can be interpreted as the
square of the 8 and 7' magnetization. " When J'/W

&0.411, all the W, (" — as we11 as JII ")~end to
zero, while J~ ") tends to a nonzero value, lead-
ing to a singlet ground state separated from the
first excited states by a gap & =2(Jii +Ji")x0.
The plot of b as a function of J/W is given by
curve 1 in Fig. 2. In this range, the correlation
functions tend to zero as 2 " when n- ~ (this ap-
pears to correspond to a 1/x behavior, where x
denotes the distance) and we have plotted

functions, and s for the gap so that

-gs s""-g ""~..s "~[(«W),-«W]",
-Xs s "cc-Xr r

"o-X, s "o:[J'/W - («W),] ', (8)

~- [J/W- (J/W).]'.
We obtain P = 0.4, f =0.7, and s = 1 with 5% error
[mean-field theory gives P =0.5 (Ref. 5)].

It is apparent that this first method is highly
approximate since we retain only four levels at
each step. This is a strong limitation since these
four states as defined have no reason to be the
four lowest states of the total set of sixteen lev-
els for one block. For «W) 0.2, there is an ex-
tra doublet crossing over the higher singlet level
after a few sets of iterations. For this reason,
we have applied another more systematic method
which deals with any number of levels nl. in such
a way that they always remain the lowest.

In the second method, we do not try to rewrite
the Hamiltonian as a spin Hamiltonian but gener-
alize to the following form at each step n'.

~(a) ~ ~ (n)

+P (A {n)g (n) +A in)~ (n)) (9)

where in a basis II) "l attached to each site I = (1,
2, . . . , nz, ), & " is an nz, && nl, diagonal matrix of
elements', "), and where&" and 8 ") are nl,

&& ni nonsymmetric real matrices. As before, we
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FIG. 1. Plot of g (before the transition) and X
=lim„(2"g("))(after the transition) as a function of
J/W.

FIG. 2. Plot of the gap 6 as a function of J/W. Curve
1 corresponds to the first method, curve 2 to the sec-
ond method w'ith nz —4 and a vanishing anisotropy; and
the dots correspond to the second method with nz ——16.
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diagonalize the ni'&& ni' matrix representing the
Hamiltonian for one block of two sites and obtain
the representation of the interblock coupling in
terms of the eigenstates of the blocks. The ap-
proximation consists in restricting to the sub-
space of lowest energies. This method can be
handled easily by computer and we have written
a subroutine which transforms the set (D,A, Bj
into a new set of dimension nJ. . We have done the
calculations for both nl, =4 and ni = 16.

For ni, =4, we recover the same results as with
the first method in the range J/W &0.2 where we
use exactly the same set of levels. In the range
J'/W) 0.2, after a few steps of iteration of doub-
let appears instead of a singlet at the top of the
set of lowest levels. To avoid ambiguity in the
choice of one member of the doublet, a small
asymmetry term e~&(S&' v&" —Sp 7'&") has been
added to the original Hamiltonian and the results
are studied as a function of e for small c.

With this second method, we observe that all
the elements of A "~ and B " tend to zero above
the transition, while some of them tend to a non-
zero value below the transition. The results for
the gap

6 =lim[E, ")-E," ]

are shown in Fig. 2. We find that (J/W), =0.325
for ni =4 and a vanishing anisotropy, and that
(J'/W), =0.375 for ni = 16.

It is fruitful to compare these results with
those of the one-impurity Kondo problem. ' Let
us define a dimensionless parameter 8 "~ at each
step of the iteration:

@ ")=J "i/maxiW, ")i,

in the first method; or

d"&=(E '") -E "))/maxima& ("&b

(where a, &

"& and b, , ") are the elements of A("&

and B(")) in the second method. This parameter
plays the same role as 8=Jp, where p is the den-
sity of states for the conduction electrons, in the
Wilson case. In the one-impurity case, 8 al-
ways tends to infinity. Except for J'=0, the fixed
point 8* =0 is never reached.

For the Kondo lattice, on the other hand, we
have shown that the fixed point 8* =0 is reached
for J&J„while another Kondo-like fixed point 8*
= ~ is reached for J)J,. The change of behavior
at J= 7, corresponds to the usual definition of a
crossover eff ect.

It is also useful to contrast these results with

the properties of the Ising chain in a transverse
magnetic field where the same kind of crossover
exists: By increasing the magnetic field, a tran-
sition from a degenerate ground state to a singlet
ground state arises, exactly as in our case. The
exact critical exponents of the transverse Ising
models are P =0.125, f =0.75, and s = 1,"in con-
trast to the Kondo-lattice results reported above.

In conclusion, we remark that the system stud-
ied here is a special case of a coupled two-chain
problem. A systematic use of this method to
study the general coupled two-chain problem is
in progress.
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