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Positron Self-Trapping in 4He
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Positron-annihilation experiments in helium gas have shown anomalies in annihilation
rate near the gas-liquid critical point which indicate the formation of positron self-
trapped states in helium droplets. We present theory which appears to confirm the ex-
istence of self-trapped states and accounts quantitatively for the positron-annihilation
rate in the range of densities and temperatures over which these states are stable. The
droplets have a maximum density 2.4 1x022 cm ~ and are typically 15 to 25 A in radius.

The positron-lifetime spectrum in helium in the
vicinity of the gas-liquid critical point has been
observed to possess a number of unusual fea-
tures. ' At some time (~10 nsec) after the intro-
duction of positrons into the gas, the positron an-
nihilation rate is found to increase suddenly to a
value corresponding to liquid densities. A quali-
tative explanation of this behavior was the sug-
gestion' that the increased rate was due to the an-
nihilation of the positron from a localized state
confined within a high-density helium cluster, the
state being populated after sufficient time had
elapsed for the positron to have thermalized.
Subsequent measurements' ' have confirmed the
effect and have established the range of gas den-
sities and temperatures over which the enhanced
annihilation rate occurs.

In contrast to this behavior for the positron it
is well known that electrons in helium' and posi-
tronium in many liquefied gases' may be self-
trapped in bubbles. The possibility of positron
self-trapping in metals has been studied theor-
etically' but experimental evidence is inconclu-
sive. Helium appears to be the first system for
which positron self-trapping is definitely exhib-
ited, . It is, therefore, of interest to understand
the nature of positron self-trapping in helium and

~
F

to determine those properties which make the
self-trapped state stable. In this Letter we pre-
sent a theory which can account quantitatively for
most of the experimental observations on this
system.

Initial attempts' to account for the self-trapped
state were based on Atkin's 'Snowball" model'
used in describing the helium density distribu-
tion around a fixed ion. This calculation, which
treats the positron-helium interaction from a
macroscopic point of view, fails to produce a
self-trapped state since it does not fully account
for the energetics of a positron in a polarizable
medium. Provided that the spatial variation of
the helium density is small on the scale of the
range of the positron-helium interaction, the rel-
evant quantity is the ground-state energy of a
positron, E,(n), in a uniform system of mean
density n, Since the net interaction is attractive,
E,(n) is negative and decreases in value with in-
creasing helium density. It is this feature, to-
gether with the easy compressibility of the gas
near the critical point, which leads to the stabil-
ity of the self-trapped state.

An approximate thermodynamic potential which
describes the fully interacting positron-helium
system is

Q[n, g] = Jd'r f(n(r) )n(r) —p(no) J d'rn(r) + J d'rfd'r'K(r, r '; [n])[n(r) -n(r ') ] '
-(5'/2m) Jdsrp+(r) V'p(r) + fd'rEO(n(r) ) ) g(r) ~
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The potential is a functional of the helium density
distribution n(r) and the positron wave function
g(r). The first three terms are contributions
from the helium alone; the fourth is the positron
kinetic energy, and the last is the positron-heli-
um interaction energy. In (1), f(n) is the Helm-
holtz free energy per particle for a helium den-
sity n at a fixed temperature T, and p, (n) = &(fn)/
~n is the chemical potential. The third term in

(1) accounts explicitly for nonuniformities in the
helium density. The equilibrium state of the sys-
tem is determined by those functions n(r) and

g(r) for which 0 attains an absolute minimum.
The interaction kernel K(r, r'; [n]) is unknown

in general; however, in the case of small density
inhomogeneities it can be related to the density
response function y(~) for the uniform system. ""
If, in addition, the variations in density over dis-
tances of the order of interparticle separations
are small, a density gradient expansion can be
used and yields ~ Jd'r g(n(r)) ~

Vn(r) ~

' for the third
term where g(n) is the q~ coefficient of a small-q
expansion of X '(q). With these approximations,
the variation of 0 with respect to n and g leads to
the Euler equations

i g i'dE, /dn

= -[p,(n) —p.(n,) ] +g(n) V'n+ —,'g'(n) (Vn ~', (2)

-(8'/2m) V'g+E, (n) y = eg.

Rather than solving these equations directly,
the thermodynamic potential 0 was evaluated us-
ing an explicit trial wave function g„(r) and the
corresponding helium density obtained from (2)
upon neglecting the gradient terms. This proce-
dure gives an upper bound to 0 and the lowest
upper bound was obtained by varying parameters
in j„(r).

Calculations have been performed for 4He and
the required thermodynamic quantities were ob-
tained from an empirical equation of state. " In
obtaining the gradient correction, the fluctuation-
dissipation theorem was used to express g(q) in
terms of the dynamical form factor S(q, tu). " By
performing a high-temperature expansion and
omitting terms involving frequency moments of
S(q, &u) greater than the second, the following ex-
pression for g(n) is obtained:

tion function g(x) by

v, =n fd'r r '[g(r) —1]. (5)

The validity of (4) is supported by 5'/2&Tm H, be-
ing typically less than 5/0 of v~ in the temperature
range of interest. The expression for g(x) in the
limit of low densities, g(r) =exp[-y(r)/kT] was
used in (5) to evaluate v~. Although this approxi-
mation yields a poor result for the compressibil-
ity, v2 was found to be insensitive to the density
dependence of g(x) as explicit self-consistent
Percus-Yevick calculations at a number of (n„T)
values above the critical point demonstrated. The
helium-helium interaction potential, cp(r), was
taken to be the effective Lennard- Jones poten-
tial'4 which gives classically the correct second
virial coefficient. (&P/Bn) r in (4), however, was
determined from the equation of state. "

The ground-state energy E,(n) was calculated
using an adaptation of the positron pseudopoten-
tial method developed for metals. " The posi-
tron-helium-atom interaction consists of an at-
tractive polarization contribution behaving as
-u/r' for large separations, where u is the he-
lium-atom polarizability, and a short-ranged
electrostatic repulsive term, The polarization
term was taken from the work of Reeh" while
the Hartree term was taken from Kestner et al."
Since the potential is approximate, the monopole
part of the Reeh potential was scaled so that the
total potential used in these calculations gave a
scattering length equal to the best theoretical es-
timate (a, = -0.524 a.u. )." E,(n) was calculated to
second order in the positron pseudopotential us-
ing Eq. (23) of Ref. 15 with the reciprocal lattice
sum replaced by a sum over all k space and
again taking the temperature-dependent low-den-
sity form for the structure factor,

~
S~'. The re-

sult, in meV, is

E~(n) = -E,m -E~',
where E,=132.4 and E, varies from 14.08 to 3.22
as T increases from 5 to 10 K and n is in units of
yP» cm-3

With this input, 0 was calculated as described
above as a function of n, and T. The variational
wave function,

2 g2
g(n) = —,'(nkT) ' — v, +

Z m He.
(4)

where v2 is given in terms of the radial distribu-

gave the lowest values for all single-parameter
functions tried, and stable self-trapped states
were indeed found. Once the lowest value of 0
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FIG. 1. Calculated positron-annihilation rate, A, , plot-
ted as a function of helium mean desntiy, no, for differ-
ent values of the temperature. The straight line is the
observed (Ref. 5) free-positron-annihilation rate as a
function of no.
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FIG. 2. Phase diagram for droplet formation. The
calculated region of droplet stability lies below the full
line. Experimental points (IIef. 5) are also shown.

had been obtained the corresponding wave func-
tion and helium density were used to calculate the
positron-annihilation rate for the self-trapped
state from

X, = Jd'rl ip„(&& I ~&(n(r)),

where A&(n) is the observed annihilation rate for
the free (unbound) state and mean gas density n.
The experimental data' give A.f (n) =0.261 &&10'n

sec '.
Annihilation rates from (7) are shown as func-

tions of mean helium density for different tem-
peratures in Fig. 1. For a given temperature,
self-trapping occurs at some minimum density
and the annihilation rate rises sharply to a pla-
teau. If the mean density is increased further
there is a maximum density beyond which the
droplet becomes unstable and the positron be-
comes free, with a corresponding drop in anni-
hilation rate back to the free-state value. Obser-
vation of the drop in rate at high densities de-
pends somewhat on the value of the rate in the
plateau region. Our values are typically 20/p

higher than the experimental ones and the effect
is therefore accentuated. More detailed experi-
mental data in this region is required to deter-
mine whether this effect is real.

As the temperature increases, the onset of
self-trapping occurs at higher densities and the

rate in the plateau region has a smaller value.
In addition there is a critical temperature above
which the self-trapped state is unstable for all
densities. The range of stability of the self-
trapped state is given well by the model as the
phase diagram in Fig. 2 shows. The critical
temperature of 9.5 K and the critical density of
0.85 &10"cm ' compare favorably with the ex-
perimental values' of 8.4 K and 1.0X10"cm ',
respectively.

The droplet profile is shown in Fig. 3 for dif-
ferent mean densities n, at a temperature of 6 K.
A general feature is that the droplet size does

0
not grow above 25 A in radius and contains from
300 to 500 atoms. At low densities the droplet
has a sharp interface. However this feature
would be smoothed out by an exact treatment of
Eqs. (2) and (3) as opposed to the approximate
treatment of the density gradient terms and the
variational method adopted here. For values of

n, above the gas-liquid critical density the drops
are smoother and our treatment is expected to be
reliable. It is to be noted that the maximum total
density in the drop is insensitive to mean density
and also to temperature.

There is generally good agreement with experi-
ment' although the calculated droplet is slightly
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formation. The conditions for droplet formation
are most favorable near a critical point where
the compressibility diverges. The theory devel-
oped here is to be extended and applied to these
other situations.

We are grateful to the authors of Ref. 5 for
communicating their results prior to publication.
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FIG. 3. The excess helium density distribution,
n(~) —no, for the calculated droplets plotted as a func-
tion of x for different values of the mean desntiy, no,

in units of 10 2 cm 3 at T =6 K. The positron wave func-

tion, g«(x), is shown (broken line) for the case no

=0.2& 10"cm-'.

more stable than that observed. In fact, an exact
solution of Eqs. (2) and (3) would yield an even
more stable droplet. However, it should be point-
ed our that the calculations have been performed
with no adjustable parameters and the results are
sensitive to the interaction energy E,(n); a 10/z
reduction in its magnitude would lead to a calcu-
lated critical point in agreement with experiment.
Furthermore, in making contact with experiment
we have assumed that the positron thermal energy
is much less than its binding energy to the drop-
let. This cannot be the case when the drop is in-
itially formed and for some time after. Until en-
ergies of the order of the binding energy can be
dissipated, the positron will not be at thermal en-
ergies, the drop will be less stable, more ex-
tended in size, and the observed annihilation rate
smaller. The features in the vicinity of the dis-
continuities in the annihilation-rate curve (Fig. 1)
may also be modified. Further theoretical work
into the kinetics of the droplet formation is re-
quired to clarify the situation.

As shown by experiment' the self-trapped state
also occurs below the helium critical point. It
may also occur near the critical point of the other
rare gases. '9 The conditions .for stable self-
trapping are not stringent "ither a sufficiently
strong attractive interaction with an easily com-
pressible medium for droplet formation or a suf-
ficiently strong repulsive interaction for bubble
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