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%'e consider the supersymmetric Higgs effect, in which a spin-s Goldstone fermion is
transformed away by a redefinition of the supergravity fields and the spin-&& gauge field
acquires the degrees of freedom appropriate to finite mass. More generally we discuss
the consistency and physical applicability of supergravity theories with broken local su-
persymmetry.

Rigorous supersymmetry implies the existence
of supermultiplets made up of fermions and bo-
sons with equal masses. If supersymmetry is to
be relevant for the physical world, it must be
broken, either softly or spontaneously. Spontane-
ous breaking of global supersymmetry gives rise
to the appearance of one or more Goldstone fer-
mions. ' When global supersymmetry is promoted
to a local invariance by coupling supersymmetric
matter to supergravity, the Goldstone fermion
disappears as a consequence of a phenomenon
analogous to the Higgs effect of ordinary gauge
theories. In this Letter we describe this super-
symmetric Higgs effect, ' and consider its possi-
ble application to the construction of realistic
models. ' In particular, the supersymmetric
Higgs effect gives a possible solution to the prob-
lem of the apparent nonexistence in nature of the
Goldstone fermion of spontaneously broken su-
persymmetry. As we know, this cannot be iden-
tified with the electron neutrino, because it would
satisfy low-energy theorems which contradict ob-
served properties of the neutrino spectrum. ~

The Goldstone fermion is described by a Major-

ana spin-~ field ~. Irrespective of the particu-
lar field theory in which it arises, it can be char-
acterized, following Volkov and Akulov, ' by the
nonlinear realization of global supersymmetry

5A, =a 'e + iaay "A,B&A. ,

where o.'is the infinitesimal supersymmetry pa-
rameter and a is a constant which measures the
strength of the spontaneous breaking of supersym-
metry. The nonlinear Lagrangian for X, invari-
ant (up to a divergence) under (1), is given by

I q =- (2a') 'det(&„"+ia'Ay"8„A.).
=-(2a') '--.'ihy"eh+. .. .

The analogy with nonlinear pion dynamics is ap-
parent. However, the chiral group SU(2) IRSU(2)
is also broken explicitly by a pion mass term. In
contrast, if we assume that supersymmetry is
broken only spontaneously, the above description
is expected to be rigorous and to be actually valid
for a suitably defined field X in any renormaliz-
able model in which a Goldstone fermion emerges.

Let us now try to promote (1) to a local trans-
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formation with parameter u(x) and to make (2) in-
variant under it by coupling ~ to the supergravity
fields e„' and g„. The complete Lagrangian will
be rather complicated. Assuming its existence,
one can easily find the first terms in an expan-
sion in the coupling constants a and I& (gravitation-
al constant). The Lagrangian (e = dete„')

I.~ =-(2a') 'e- &i7y &X —(i/2a)&y"g+. . .
changes by a divergence under

ce ——,'ime (~y,Z„,P p.
X p~p (7)

Local supersymmetry is valid provided that the
two parameters are related by

The simplest and most natural is the correspond-
ing de Sitter space and one knows that the con-
cept of mass is rather delicate there. ' We next
recall the recent observations" "that one can
add to the supergravity Lagrangian (5) the sum
of a cosmological term and of a spin-2 mass term

5A. =a 'u(x)+. . . , CK = 3K' (8)

pep = 'LKuy )~q

6(q = —2z '&qu+. .. .
To (3) one must add the usual supergravity La-
grangian '

L,g= —(2/c2) ~eR —g ie "'~ggy5yqD gp,

Indeed, the sum of (5) and (7) is then invariant un-
der a modified supersymmetry transformation,
in which the usual transformation law for the
spin-2 field, ~Q„=-2~ 'D„&, is replaced by

5(q = —2z 's„u,
where

where 1
cop —Dp +2~3@ (10)

(6)

and R is the contracted Riemann tensor, taken as
a function of the vierbein and of the connection &

and its derivatives. The sum I-,8+I-& is invariant
under (4). The transformation law for the field A.

shows that it can be transformed to zero by a
suitably chosen local supersymmetry transforma-
tion. In other words, the field ~ can be absorbed
into a redefinition of the fields e„' and p„. The
resulting theory is described by the Lagrangian
(5) of supergravity plus the cosmological term
from (3) (plus possible additional terms from the
supersymmetric matter part which gave rise to
spontaneous symmetry breaking). This is the su-
persymmetric Higgs effect.'

At first sight, the result is puzzling and disap-
pointing. It is puzzling because the disappearance
of the Goldstone particle gave rise to a cosmolog-
ical term, instead of generating a mass for the
spin-2 field, as one would have expected from a
count of degrees of freedom. It is disappointing
because the empirical smallness of the cosmolog-
ical constant —(2a') ' seems to destroy any hope
that the spontaneous breaking of supersymmetry
will be large enough to account for the observed
mass splitting between bosons and fermions. We
shall deal with both problems.

To resolve the puzzle we first note that, in the
presence of a cosmological term, one cannot
quantize in a Minkowski background, but must
take instead as background space a solution of
the Einstein equations with cosmological term.

(there is a corresponding change in 5cu„„).
The existence of this local supersymmetry"

shows that, in spite of the apparent mass term
in (7), the spin-& field has the number of degrees
of freedom appropriate to the massless case,
namely two. For example, in an external de Sitt-
er space satisfying (8) the covariant derivatives
(10) commute, i.e. , [u„,u, ]=0, and the quanti-
ties („„=S„(„-u,g„and*/""= —,'e '~""

gq~ are
gauge invariant under (9), as is the Harita-
Schwinger equation (11). The latter is equivalent
to *g„, y,)„,=-0, y„g""=0, or y„"g"'=0, and im-
plies $„(ep"")=S„(e*p"')=0. Therefore also
D„(eg"') =D„(e*g"')=0. These are the correct
equations for a massless spin-2 particle. Qn the
other hand, if (8) is violated, the constraints y g
=O=D„(e(") replace the gauge invariance and the
field is massive, with four degrees of freedom.
Similar conclusions follow when gravity is dy-
namical. Thus, when the cosmological term and
the spin-2 mass term are not related as in (8),
there is no local supersymmetry and the spin-&
field is effectively massive. This is true in par-
ticular when there is On~y a cosmological term,
which finally resolves the paradox of the Gold-
stone fermion's degrees of freedom.

We now show that despite loss of supersym-
metry, at least the classical equations of motion
remain consistent in that no anomalous propaga-
tion hypersurfaces occur. To see this we follow
a method similar to that which led Velo and Zwan-
ziger" to discover the anomalous propagation of
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a spin-& field coupled minimally to an external
electromagnetic fieM. Let us consider the equa-
tion of motion for (& which follows from (5) plus
(7), without assuming (8). It can be written, in-
cluding the mass term, as

N=—-y R+2y ~ Sg-2m' =0

(as will become clear, one cannot simply use y
~ R instead of N). We now replace (11)by the
equation

(15)

With use of the simple identity

(18)

it follows that

(Rp =y~(sggp —&pgg)+ (&p —my')y ' (
= (y ~ 8 +en)(„+ ~ ~ ~, (17)

where the dots denote terms with no derivatives
of („. Similarly,

N =28pg" +. . . . (i8)

Finally we verify that, if (15) is satisfied, the
initial validity of the constraints (13) and (14)
implies the vanishing of Box and ~,¹ Indeed one
finds, using (14),

y ~ 6l = N (y - 5) + 2m) g—, (19)

and, using (12),

2&„(e@")= (c~' —Spn ')eg + &„(ey"N)

+ 2&&e(&" —y "y $)y. . (20)

In the last term in (20) the second derivatives of

y cancel. This proves our statement. %e con-

This equation does not contain 80/0. Therefore
we transform it in a standard way. First we ob-
serve that, using the equations of motion for the
vierbein and for the torsion, one finds

2&p(eR") = (c~' —3m')ey ~ q

This can be either verified directly, by the same
arguments as in Ref. 7, or simply deduced from
the fact that the Lagrangian (5) plus (7) can be
written as the sum of a part invariant under (9)
plus a noninvariant term (c —3m'~"')e. There-
fore Eq. (11) implies the validity of the constraints

(i3)

m' = ~(~/a)'. (21)

If we assume that the spontaneous supersymme-
try breaking is responsible for the observed
mass splittings between mesons and baryons,
the order of magnitude of the constant a must be
given by a hadronic mass, say the proton mass,
in which case we find

m - (~m, )m, ,

with any~- 10 ". The mass of the spin-2 field is

(22)

elude that (15), together with (13) and (14), is
equivalent to (11). The characteristic surfaces
of (13), (14), and (15) are obviously the local
light cones.

The argument just given can be applied essen-
tially without change to the O(2) and O(3) super-
gravity theories with additional couplings. It has
been shown by Freedman and Das" that these the-
ories are locally supersymmetric, provided cer-
tain relations are satisfied among the gravitation-
al constant, the cosmological constant, the spin-
~ mass, the minimal vector coupling, and the
magnetic-moment coupling. One finds by the
present methods that, if local supersymmetry is
broken by changing only the value of the cosmo-
logical constants, the theory is still consistent
and propagation occurs along the local light cones.
In particular, the cosmological constant can be
set equal to zero. This latter model then pro-
vides an example of consistent coupling of a mas-
sive spin-~ field to both electromagnetism (or
Yang-Mills) and gravitation, which can be quan-
tized in Minkowski space. It is remarkable that
gravity is necessary (and suffices 1) to compen-
sate the inconsistencies of flat-space spin-&-
electromagnetic coupling.

We now return to the Higgs effect and the ap-
parently disappointing magnitude of the accom-
panying cosmological constant. Existence of an
invariant action including (7) that satisfies (8)
can be used to resolve this difficulty as well.
The sign of the cosmological term in (7) is fixed
by (8), and corresponds to a de Sitter space with
O(3, 2) invariance. On the other hand, that of the
cosmological term in (3) is also fixed, but op-
posite. Adding (3), (5), and (7), one can adjust
the constants so that the cosmological terms can-
cel. [One must, of course, modify (3) so as to
make it invariant under (9), which, to the order
considered here, requires adding to (3) a term"
—imitX+. . . .] Now one can clearly cancel the
cosmological term between (3) and (7) with (8) by
setting
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very small, which is not unacceptable, but we
now have hadronic mass splittings of reasonable
magnitude and zero cosmological constant. "

Discussions with P. Higgs and D, V. Volkov
are gratefully acknowledged.
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A new method of exploring the contents of the renormalization-group equations for dis-
crete spins is introduced. The equations are expanded in low-temperature series and the
truncated series are used to obtain the critical exponents and critical temperature of a
system. The method is demonstrated on the planar triangular Ising lattice and the criti-
cal parameters are found to be within a few percent of the exactly known values in third
nonvanishing order of approximation.

The work of Kadanoff' and Wilson' on the appli-
cation of scaling laws and the renormalization
group to the study of lattices has inspired a wide
range of activity in the field of critical phenom-
ena. '

Wilson's method of continuous spins exposes
the symmetries and general features of the the-
ory, but it is not very useful for the calculation
of critical exponents, critical surfaces of cou-
pling constants, and scaling functions, because
the e expansion used in the calculations is only

an asymptotic series.
Niemeijer and van Leeuwen have proposed a

method which is based on the direct study of the
discrete lattice. ~ Following the idea. of Kadanoff, '
they introduce a finite rescaling of the lattice I
by dividing it into cells, each containing n spins,
in such a way that the new lattice L' made up of
the cells is a, similar rescaled version of the
original. The cell spin s,. ' of the ith cell is de-
fined and the spin variables inside a cell s~' are
replaced by the variables s,. ' and 0 ~'~, the latter
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