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different Ni(001) unit meshes of the Ni(001)c(2
&&2)O surface.

The main features of the potential plot in Fig.
4 are a central region of negative potential and
regions of positive potential on the unit-mesh di-
agonals. These features are consonant with what
is known about the structure of ¹(001)c(2&2)O
surface from LEED intensity analysis. ' We at-
tribute them to an adsorbed 0 atom located above
the center of the square formed by four adjacent

¹ atoms, and to diagonally directed Ni-Q bonds,
respectively.

Basically the reason that the lateral structure
can be extracted directly from experiment is that
our procedure in effect selects for observation a
region where the potential is weak. In this region
the lateral variations of potential cause interac-
tions between two-dimensional free-electron
states that are strong enough to measure by the
improved technique described in this Letter, but
at the same time weak enough to be treated theo-
retically as a small perturbation.

Some advantages of a method of surface-struc-
ture determination based on resonance dispersion
measurements are apparent from the example de-
scribed. The experiment itself is as simple as
LEED and much simpler than angle-resolved
UPS. With regard to interpretation, no large-
scale computations are necessary as is the case
for LEED intensity analysis; the lateral struc-
ture of the potential is obtained directly from ex-
periment and does not involve computations for
trial structures. The interpretation involves the
dispersion of only one state and so is inherently

simpler than in UPS where the dispersion of both
an initial and a final state. must be considered.
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It is shown that a flux vortex, in the presence of a sufficiently large current density
applied parallel to its axis, is unstable against the growth of helical perturbations. This
instability, which has an analog in magnetohydrodynamics, may play a critical role in
current-carrying type-II superconductors subjected to longitudinal magnetic fields.

The behavior of spiral flux vortices in current-
carrying type-II superconducting cylinders sub-
jected to longitudinal magnetic fields is not yet
completely understood. Still unresolved is the
question of the vortex arrangement above the crit-
ical current, where a nonzero time-averaged
longitudinal voltage and a longitudinal paramag-

netic moment coexist. In this case, straightfor-
ward critical-state or force-balance calculations,
modified to account for spiral vortices, yield a
longitudinal moment but do not correctly predict
the value of the critical current at which a volt-
age appears, nor are they capable of providing a
satisfactory picture of a flux-flow state with a
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nonzero longitudinal voltage. ' ' Several authors'2
have suggested that fluxline cutting —.he intersec-
tion and cross-joining of adjacent spiral vortices—might be the mechanism by which the critical
state breaks down and a voltage appears. The
conditions under which fluxline cutting occurs,
however, are not as yet well known.

In this Letter, I show that a flux vortex, when
subjected to a sufficiently large local current den-
sity applied parallel to its axis, is unstable to
the growth of helical perturbations. I also show
that this instability, which has an analog in mag-
netohydrodynamics, provides a specific mecha-
nism for the triggering of fluxline-cutting events.

The forces exerted on a spiral vortex are best
understood by first considering the Gibbs free en-
ergy as a function of the radius p of the imagi-
nary cylinder on which the vortex axis lies. In
the presence of a longitudinal applied magnetic
field H, and transport current I, where H, and I
are positive in the z direction, the Gibbs free en-
ergy b, G' per unit length of a type-II superconduct-
ing cylinder of radius a containing a spiral vor-
tex, relative to the energy in the Meissner state,
can be written as the sum of three terms. One
term, bG, ', arises from the self-energy of the
vortex; the other two terms, AG, ' and A~', de-
scribe the interaction between the vortex and the
sources of H, and I. The effective force per unit
length of cylinder exerted on the vortex has only
a radial component, —dhG'/dp. Dividing this by
the length of vortex per unit length of cylinder,
one obtains the corresponding driving force (often
referred to as the Lorentz force) per unit length
of vortex f=f, +f,+fr= f~P, where P is one of the
usual unit vectors, p, y, and z in cylindrical
coordinates. Convenient approximate expres-
sions for the three contributions to f are ob-

P

tained as follows.
If the interaction of the vortex with its image in

the cylinder wall is neglected, the self-energy
per unit length of vortex is' y+„/4m, where y,
= ~/2e is the flux quantum and H„ is the lower
critical field of the bulk superconductor. It is
helpful to introduce the unit vector cp, = P,/q,
= y sino. + z cos n, defined as the local unit tangent
to the vortex spiral in the sense of the vortex's
self-field, where a is the pitch angle at radius p.
If P denotes the pitch of the spiral, tana=+ 2'/P,
where the sign is positive (negative) for a right-
handed (left-handed) spiral. The self-energy (or
line-tension) contribution to the force, f, =
—(qoH „/4', )p, where R, = p/sin~n is the radius
of curvature of the spiral at radius p, describes
the tendency of a spiral vortex to move to the
center of the cylinder, where it has the shortest
length and the least self-energy. This force also
can be written as f, = j„xp,/c, where j„=(c/4m)V
x(H„V ).

Using the London model6 to calculate the inter-
action between the vortex spiral and the external-
ly applied magnetic field and the current density,
one obtains f, = j,x yo/c and f r = j r x yo/c, where

cH r I,(p/X)
4~X I,(a/7)' (2)

Hr = 2I/ca is the current-induced self-field at the
surface, and A. is the penetration depth. j, and j ~,
the current densities produced in response to H,
and I, are obtained by solving Ampere's law and
the first London equation' in cylindrical coordin-
ates I„(x) .is the modified Bessel function of the
first kind.

The net driving force per unit length of vortex
is thus

Consider the fate of a right-handed spiral vor-
tex nucleated at the surface with its axis locally
aligned along the net magnetic field at the sur-
face, HrFp +H, z (Hr&0 and H, &0). The pitch an-
gle at nucleation is o.,„=tan '(Hr/H, ), the pitch
is P,„=2ma(H, /Hr), and the radius of curvature is
R,(a)=a(1+H, /Hr ). The force on the vortex is
seen from Eq. (3) to be radially inward, since all
terms within the brackets are positive. The vor-
tex spiral thus maintains a constant pitch as it
contracts around the cylinder axis. The terminal

velocity v of the contracting vortex can be approx-
imated by balancing the driving force f and the
viscous drag force —gv, where g is a phenomeno-
logical viscous drag coefficient8 per unit length
of vortex.

When the vortex spiral reaches the cylinder
axis, f~ vanishes, since the radius of curvature
is infinite and both p and the pitch angle vanish
there. One is tempted to assume that the cylinder
axis represents a stable final resting place for a

1426



VGLUME 38, NUMBER 24 PHYSICAL RK VIE%' LETTERS 15 JUNz 1977

straight vortex. This assumption is not always correct, however, for such a vortex is susceptible to
the growth of a helical perturbation if the applied current is sufficiently large. For the situation just
considered, although a right-handed spiral fluctuation is damped, a deformation of the vortex into a
left-handed spiral with pitch P and wave number k = 2w/P can grow, as can be seen by writing the cor-
responding driving force per. unit of vortex as f&=K(p, k)p, where

&(p, k) = (@0/4'. )[1+(kp) ] ' [Hra, kAIO(p/X) —H„(kX) [1+(kp) ] '~ —H,aoI, (p/X)(~p/X) '],

a, = [I,(a/A)] ', and a, = [2I,(a/X)] '. For fixed
values of Hr, H„, and H„E(0,k) has its maxi-
mum value,

K,„(0)= (cp,a, '/16wz'H„)(Hr' -Hr, '),

for k = k,„=a,H r/2XH„, where

H„= (2a,"'/a, )(H~„)"'.
If Hr &Hr„X(0, k) &0 for all values of k in the
range k &k&0„where

(5)

k, = ~ '(a, /2H„)[H, *(H,'- H„')'"]. (7)

Thus, for fixed H„and H„ if H~&H~„any left-
handed spiral fluctuation with k in the above range
is unstable. The initial growth rate of the insta-
bility, obtained by balancing the driving force
and the viscous drag force, is P= p 'dp/dt = K(0,
k)/q. The mode of maximum instability has k
=k,„. It also can be shown that if X(p, k) is posi-
tive for an infinitesimal fluctuation with p =0, it
remains positive for all p out to the specimen ra-
dius a.

The above -described spiral-vortex expansion
instability has a close analogy with a magnetohy-
drodynamic instability, called the spiral, helical,
or cork-screw instability, in which a cylindrical
column of conducting fluid carrying a current in
a longitudinal magnetic field is subject to the
growth of spiral distortions of the column. ' "
The destabilizing influence has been shown' "to
be the Lorentz force density Z XB/c exerted by
the applied magnetic flux density Bupon the cur-
rent density J, which is parallel to the spiraling
axis of the fluid cot.umn. The spiral-vortex ex-
pansion instability is the analog of this instabil-
ity, except that the roles of the magnetic flux den-
sity and the electrical current density are inter-
changed. Here the destabilizing influence is the
driving force per unit length j r x ego/c exerted by
the applied current density j ~ upon the quantum
of flux y„which is parallel to the spiraling axis
of the vortex.

A positive time-averaged longitudinal voltage
can be generated along a superconducting cylind-
er by the following periodic sequence of motions

of a single spiral vortex, provided the spiral ex-
pansion instability is at work. As the cycle be-
gins, the cylinder contains no vortices. If the
values of H, and Hr= 2I/ca (H, &0 and Hr&0) are
such that one vortex, but no more than one, is
produced in the cylinder, then a right-handed vor-
tex spiral of pitch P,„=2ma(H, /Hr) is nucleated.
The vortex then moves to the cylinder axis, where,
for sufficiently large H~, it becomes susceptible
to the spiral-vortex expansion instability. An un-
stable left-handed spiral, whose most probable
pitch is P~ = 2m/k, „, grows and expands outward
until it annihilates at the surface, restoring the
cylinder to its initial condition and preparing it
for the beginning of another cycle. If the frequen-
cy of this cyclic motion is v, the time-averaged
electric field along the length of the cylinder is
E,= (hv/2e)(P, „'+P~ '). Since each spiral flux
vortex contributes to the longitudinal flux while
it is in the cylinder, the succession of spiral vor-
tices makes a positive contribution to the time-
averaged longitudinal flux. However, since each
flux quantum that enters the cylinder later exits
again in a kind of breathing motion, the time-av-
eraged longitudinal flux does not increase with
time.

When more than one vortex is present in the
cylinder, a positive time-averaged longitudinal
voltage can be generated by a more complex peri-
odic sequence of motions of spiral vortices, again
provided the spiral-vortex expansion instability
can occur. The simplest example of this is
sketched in Fig. 1. As the cycle begins [Fig.
1(a)], a straight vortex initially resides along
the axis of the cylinder, but the combination of
H, and H~ is not quite sufficient to make this vor-
tex unstable. If the values of H, and H~ are such
that no more than two vortices are in the cylinder
at one time, a second right-handed spiral vortex
of pitch P,„=2pa(H, /H r) is nucleated at the sur-
face. As the spiral contracts, the additional cur-
rent density generated by this vortex along the
cylinder axis causes the first vortex to undergo
a spiral instability and to deform into a left-hand-
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FIG. 1. Cyclic motion of two vortices, producing a
longitudinal voltage. (a) First vortex lies along cylin-
der axis. Applied magnetic field H, and current-in-
duced self-field Hz ——2I/ca causes nucleation of a sec-
ond right-handed spiral vortex of pitch P,„. (b) First
vortex undergoes spiral-vortex expansion instability
and deforms into left-handed spiral of pitch PI.. (c) Spi-
rals intersect and cross-join (dotted lines). (d) Result-
ing double helix of pitch P, ~ is unstable. One spiral
contracts to the center and the other exits.

gered by the spiral instability at the center pro-
duce pitch lengthening of vortex spirals next to
the cylinder axis. Additional fluxline -cutting
events, triggered by the spiral instability through-
out the remainder of the cylinder cross section,
pass this pitch lengthening from the center to-
ward the surface. When the outermost, last-nu-
cleated spiral vortices of pitch P,„undergo flux-
line cutting, they are transformed into an equal
number of spiral vortices of increased pitch P„.
These new vortices are repelled outward, such
that they annihilate at the cylinder surface. Al-
though there is thus no net increase in the number
of longitudinal flux quanta over a cycle, a non-
zero longitudinal electric field E, nevertheless
is generated because the pitch of the entering
spiral vortices is less than that of the exiting
ones. If v is the rate at which spiral vortices nu-
cleate, E,= (hv/2e)(P, „'—P,„'). The paramag-
netic moment can be understood in terms of a
more familiar critical-state or force-balance
theory, '~"' in which spiral vortices adopt a
force-free or nearly force-free configuration of
currents and fields.

ed spiral of pitch Pi, which expands outward to
meet the contracting spiral [Fig. 1(b)]. The two
spirals intersect, cross-join [Fig. 1(c)J, and
then straighten into two spirals (a double helix)
of the same pitch P,„, where P,„'= & l P,„'
—Pi 'I [Fig. 1(d)]. Since the two resulting spir-
als repel each other with a greater force than
did the original vortices, one spiral contracts
around the cylinder axis and simultaneously re-
pels the other one outward unitl it annihilates at
the surface, restoring the cylinder to its initial
condition. If the frequency of this cyclic motion
is v and if the existing vortices are right-handed
spirals (of pitch P,„&P„), the time-averaged
electric field along the length of the cylinder is
E,= (hv/2e)(P, „'—P,„').

Extension of the above analysis to a large num-
ber of vortices leads to the following detailed pic-
ture of how a nonzero time-averaged longitudinal
voltage and a time-averaged paramagnetic mo-
ment can coexist in a type-II superconducting cyl-
inder carrying a current in an applied longitudin-
al magnetic field: Spiral vortices periodically
nucleate at the surface, and as they contract in-
ward, they cause the spiral-vortex expansion in-
stability to occur throughout the interior of the
cylinder. Fluxline -cutting events that are trig-
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