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'Black holes are shown to obey the principles of irreversible thermodynamics in the
form of a fluctuation-dissipation. theorem for their zero-point quantum fluctuations.
Moreover Hawking radiation is shown to be related to the macroscopic radiation of a non-
stationary black hole in accordance with Onsager's principle.

Recent work on black holes, culminating in
Hawking's' remarkable discovery of their quan-
tum radiance, has shown that they obey the laws
of equilibrium thermodynamics. ' In this Letter
we show that they conform also to the principles
of nonequilibrium and irxevexsi hie thermodynam-
ics, in the form of a fluctuation-dissipation theo-
rem. ' The dissipation is associated with the ab-
sorption of ordered energy by the black hole and
its subsequent reradiation by the Hawking proc-
ess. It has been shown~ that Hawking radiation
has the same stochastic properties as black-body
radiation, and so is completely disordered. A

black hole is thus a perfect dissipator.
To help understand this property of black holes,

we apply the theory of dissipative processes. '
This theory is based on the following ideas: (a) A

dissipative system D possesses a large number
of closely spaced energy levels lying near to the
ground state. (b) In consequence, when this sys-
tem is coupled to another system S, it exerts a
force on it which fluctuates in time and is usually
initially uncorrelated with the natural fluctuations
of S. The cumulative effect of this fluctuating
force is to dissipate the excess energy of S by
distributing it among the many energy levels of
D. (c) The effect of S on D, in linear approxima-
tion, is to produce a deviation from its equilib-
rium state which on average cannot be distin-
guished from a purely spontaneous fluctuation of

D (Onsager's' principle). (d) The fluctuating
force exerted by D represents a source of noise
power as well as of dissipation. The fact that S
and D can come into equilibrium depends on both
the dissipative and exciting aspects of the force.
The sate at which equilibrium is approached,
and therefore the associated impedance function,
are determined by the statistical properties of
the fluctuations. The formal statements of these
relations are the various fluctuation-dissipation
theorems. The first version of this theorem was
in fact discovered by Einstein' in the course of
his work on Brownian motion. (e) The fluctuation-
dissipation theorem can also be regarded as pro-
viding an expression for the energy density re-
siding in the fluctuations. In this expression the
(frequency-dependent) impedance takes on a new
significance as a quantity proportional to the den-
sity of states of the dissipative system

We now apply these ideas to the dissipative ac-
tion of a black hole. In this Letter, we confine
ourselves in the main to the dissipation of gravi-
tational disturbances. A more comprehensive
and detailed discussion will be given elsewhere.

It has been known —at least since the work of
Callen and Welton' —that it is possible to ascribe
the radiation damping of the motion of an accel-
erated charge to a coupling between the radiat-
ing charge and the quantum fluctuations of the
electromagnetic vacuum. In order to proceed in
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this same spirit @re shall briefly examine the ef-
fect of the quantum fluctuations of a scalar field
y in the Minkowski vacuum I 0) on a monopole
charge which possesses internal degrees of free-
dom and is uniformly accelerated. The existence
of these internal degrees of freedom enables us
to regard the accelerating charge as a detector
of cp particles. The classical analog of such an
accelerating detector is well known. ' The quan-
tum calculation eras first performed by Unruh'
and has since been elaborated by DeWitt. '

The analysis is facilitated by the introduction
of accelerated (Rindler) coordinates defined in
terms of standard Minkowski coordinates by

t=$ sinhv, x= $ cosh',

and a worldline of constant g is a path of uniform
acceleration g '. It is supposed that the coupling
of the particle to the scalar field is achieved by
an interaction Lagrangian of the form

L,„,= em(x)y(x),

where m(x) is a monopole charge and e'is a small
coupling constant. If we adopt the convention of
denoting y(x) evaluated at x(~) = (~, $, y, E) by q(~)
and similarly for m(x), then it is found that the
rate at which the detector makes transitions
from an energy eigenstate corresponding to a fre-
quency v, to another eigenstate corresponding to
another frequency v, = v, + v is

R(v I v, ) = ~'I &v, + vlm(0)l v,&l'J d~e'"(0( p(v)cp(0)[0&

=~'I&vi+vlm(0)Ivi&l'(»g') 'v/(e""-1)
(1)

(2)

The last equality follows by explicitly evaluating
the integral, and is, of course, just Unruh's re-
sult. ' We wish to emphasize that (1) is a fluctua-
tion-dissipation theorem since R(v~ v,) determines
not only the equilibrium internal state of the
charge but also the rate at which equilibrium is
approached, or equivalently the dissipation rate
of any correlations that might initially be present.
We note also that (1) shows that R(v~ v, ) is essen-
tially determined by the Fourier transform of the
autocorrelation function of the scalar field which,
by the Wiener-Khinchin theorem, is just the pow-
er spectrum of the noise evaluated along the
worldline of the particle.

The observation that (1) is a fluctuation-dissi-
pation relation does not of itself explain the re-
markable fact that the spectrum in (2) should be
Planckian. This property appears to be intimate-
ly related to the explicitly stationary character
of the Rindler manifold in combination with its
causal and analytic structure. " We hope to re-
turn to this question elsewhere.

Let us now consider a particle detector that is
constrained to remain near the horizon of a Kerr
black hole and to corotate with it. That is, we
take the detector to follow the path

x(~) = (t+ 7, r, 6t, cp+0 ~),

where (t, r, 8, y) are Boyer-Lindquist coordinates
and 0 is the angular velocity of the horizon.

Since we are mainly concerned with gravitation-
al disturbances, we shall consider the detector
as weakly coupled to the fluctuations in the gravi-

- tational field rather than to those of a scalar field.
The path of the detector follows the trajectory of
a Killing vector so the regime is again a station-
ary one. We would expect that the detector wouM
make transitions between its various energy lev-
els at a rate dictated by the spectrum of the vac-
uum fluctuations of the gravitational field in much
the same way as in our previous example.

As a measure of this spectrum we shall take
the Fourier transform of the autocorrelation func-
tion of the gravitational shear" 0 in the Hartle-
Hawking tetrad. We choose o since it determines
a11 the nontrivia1 perturbations of the metric";
moreover, since it is gauge invariant, it is a
suitable variable to quantize. The problem is,
of course, not well posed until we choose a "vac-
uum state" for the gravitational field. Of the
three vacua usually considered, namely those of
Bou1ware, ' Hawking and Hartle, "and Unruh, '
only that of Unruh meets the requirements that
the renormalized values of physical observables
are we11 behaved on the future horizon and that at
large radii it corresponds to an outgoing flux of
black-body radiation. " In this sense then, the
Unruh vacuum seems to approximate best the
state that would obtain following the gravitational
collapse of a star and that would give rise to the
Hawking dissipation, which we are aiming to re-
late to a fluctuation spectrum. We shall there-
fore compute the expectation value of the autocor-
relation function of 0 in the Unruh vacuum. A
direct calculation shows that asymptotically, as
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where z is the surface gravity of the hole, ~, is
the radius of the outer horizon, and by o(T) we
mean o(x) evaluated at x(r).

We recognize this relation as a fluctuation-dis-
sipation theorem, with u'+4m' playing the double
role of impedance function and density-of-states
factor. This factor deviates from the more fa-
miliar co' form in a manner reminiscent of the
effect on radiation damping of enclosing a charge
in a finite box." In the black-hole situation, the
deviation is important for wavelengths 1/~ which
are not small compared to the length scale 1/~
of the gravitational field. In fact, for a field of
spin s the density-of-states factor is proportion-
al to u2+s'I&. "."

I.et us now consider the rate at which a black
hole dissipates a gravitational perturbation. If
the disturbance is purely gravitational and 0*0
is slowly varying, then to lowest order the area
of the horizon increases at a rate given by"

dA/dv =2m 'Jv*vdA

),m

dp(p -mG)T, (p, a)
e27t (P - m0)/ K (6)

where T, (p, a) is a transmission factor for
waves of frequency p and angular eigenvalues l
and m for a black hole of specific angular momen-
tum a.

The second equality follows either by consider-
ing the luminosity at infinity, or by observing
that, due to the invariance of the Hawking vacuum
under time reversal, &H IU*UI»„„„=0and
hence, as r -r„

where v is a suitably defined time coordinate on
the horizon. Since the balck-hole entropy is pro-
portional to the area, this formula determines
the dissipation rate in a macroscopic process
such as the slowing down of a rotating black hole
by a moon.

If we now interpret v as a quantum operator,
take a vacuum expectation value and renormalize,
then we may employ (4) to describe also the rate
at mhich the mass of the black hole is dissipated
via Hawking radiation. We mould then have

&Uio*oi»„„., dA
dA 2

«lo*ol »..., —«Io*ol», ..., —&Hlo*oli»„...., = &Ulo*ol»-(IIIU*oI»,

which may be calculated directly. Equations (4)
and (5) show that the dissipation rate is quadratic
in the perturbation, so that the black hole is a
linear system in the sense of Onsager. '

In virtue of this, we can fit into our picture the
emission by a black hole of Hawking gravitational
radiation. We know from macroscopic theory
that a nonstationary black hole with a nonvanish-
ing shear on its horizon would radiate gravitation-
al waves to infinity, and in consequence mould re-
duce the shear of the horizon and approach a sta-
tionary state. Now, according to Qnsager's' point
of view, a linear system (that is, one with no
memory) behaves on average in the same way in
a given configuration whether it reached that con-
figuration by a spontaneous fluctuation or by an
externally induced perturbation. Accordingly we
would expect that the quantum fluctuations of the
shear mould also lead to the emission of gravita-
tional radiation, and since the shear fluctuations
have the stochastic properties of black-body radi-
ation at a temperature x/2E, we would expect the
gravitational radiation to have the same proper-
ties. This is precisely Hawking's result (6). A

more graphic expression of this point of view is
that the black hole may be thought of as possess-
ing internal coherence by virtue of the localiza-
tion of its mass; when the vacuum fluctuations of
the gravitational field are allowed to act on it,
this coherence is corrupted and the mass is
sapped away.

There is an important proviso, however. There
will be a net emission of gravitational radiation
only provided that phase relations have been chos-
en which do not exactly suppress the flux. If the
black hole is the result of stellar collapse, then
one would not expect the collapse to respect cor-
relations that might initially be present. This is
essentially Hawking's point of view. By contrast,
if we are dealing with an eternal Kruskal black
hole, it is not clear what are the "correct" initial
conditions to take. The problem is an academic
one and is usually phrased in terms of choosing
a particular "vacuum state. " If one were to
choose either the Boulware or the Hawking vacu-
um, there would be no net flux at infinity since in
these cases correlations would have been chosen
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which would exactly suppress the radiation.
The resulting situation is then essentially the

same as for an atom in its ground state which
has been coupled for a long time to the electro-
magnetic vacuum. There is then on average no
exchange of energy between the atom and the elec-
tromagnetic field because the zero-point fluctua-
tions of the field drive those of the atomic mo-
ments and produce complete interference. ' '

Correspondingly we can regard this final state as
one of equilibrium between two systems of zero-
point fluctuations. ' From this point of view,
Hawking's great discovery is that a black hole
formed by gravitational collapse would not achieve
such an equilibrium state (unless it were con-
tained in a sufficiently small box").

It is a pleasure to acknowledge many fruitful
discussions with Paul Chrzanowski, David
Deutsch, and Bryce DeWitt. The authors are es-
pecially indebted to Paul Chrzanowski for an ex-
tensive series of discussions regarding gravita-
tional perturbations of the Kerr metric.
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