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state viscosities with data obtained near melting
pressures.

In summary, we observe that spin waves do
exist in 'He-8 and that they are by no means
overdamped modes. Further, we have shown
that within the context of current theory, spin-
wave effects can be calculated with reasonable
precision. We believe that the (20'%%uz) discrepancy
between theory and experiment is attributable to
the need for a nonzero value of I', '.

We wish to thank W. Q. Sprenger and S. B. Dar-
ack for their technical assistance in these experi-
ments, D. D. Warner for his advice in program-
ming the computer, S. Engelsberg who has long
encouraged the experimental effort to observe
standing spin waves in a parallel array, and M. C.
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of this work.
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Dielectric Anomaly and Improper Antiferroelectricity at the Jahn-Teller Transitions
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Dielectric measurements have been carried out on the single crystals of DyVO4, TbVO4,
and TmVO4 through the Jahn-Teller transition temperatures. An anomalous increase of
the dielectric susceptibility with temperature along the c axis was observed for DyVO4,
but not for TbVO4 and TmVO4. This behavior is explained as due to the antiferroelectri-
city driven by the soft &

&g strain mode through the 'sublattice piezoelectricity. "

Some of the zircon-type rare-earth vanadates
and arsenides have attracted much interest be-
cause of their cooperative Jahn-Teller phase
transitions. ' ' In DyVO, and DyAsO~, the (x,
-x,)-type (B,g symmetry) spontaneous strains
occur below the transition temperature (TD),
while in TbVO4, TmVO4, and TmAs04, x,-type
(B,g symmetry) spontaneous strains occur; there-
by softening of transverse acoustic phonons [or
the elastic stiffness component a(c» —c») for the
former group and the component c66 for the latter
group] takes place. ' ' The transitions have been
regarded as a uniform tetragonal-orthorhombic

distortion comprising no internal strain because,
according to Raman-scattering experiments, '
there was no evidence of a soft optical mode ei-
ther above and below T~. We report here the
first observation of the dielectric behavior near
the transition temperature in DyVO„TbVO„and
TmVO4 single crystals and propose a new model—that for DyVO4 at the low-temperature phase
there should be an antiferroelectric ordering due
to the interaction of some optical modes with the
strain mode.

Temperature variations of the dielectric con-
stants were measured for the samples of single
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FIG. 1. Temperature vanatxon of tf the dielectric con-
f D VO, TbVO4, and TmVO4 along the c and &stants of DyVO4, 4,

a three-terminalaxes. Measurements were done by a ree-
A at 1 knz unless other-capaapacitance bridge (GR 1615A), a

wise denoted, with relative accura yc of 1o 10

crystals grown by a floating-zone method. The
ults of the measurements are summarized inresu s o e

Fi . 1. The important features are as olg,
F D VO an anomalous increasee in e theor y 4,

dielectric constant along the ax'c is was found
with its peak at T = 15.2 K. In comparison, much

0smaller anoma ies in1 s in & were observed for TbV 4
and TmVO, . (2) The temperature variation of c,
n D VO quite resembles the elastic characteris-

tics'4 in such a way that the anorna ou p
th

' erse dielectric susceptibility is proportion-
al to the value of elastic stiffness ~11
dielectric characteristics for TmVO4 also varies,
th h much smaller in magnitude, concurrentlyoug

1.'with elastic behavior of the crysta .
VO aroundThe observed anomaly in &, of DyVO,

the Jahn-Teller phase transition cannot be as-
'b d t the electrostrictive effect which always

attends at the structural phase transition wi
relation &y, = 2q«(x, ),. How ever the observed
&y3 d spontaneous strain & 3&x & were found not
to obey the above relation but to give much larg-
erq» y acb f ctors of 10'-10' compared with q»

~ F~ Moreover there is no such pre-
cursing effect in the lattice distortion (x3) as

b T . The Jahn-Teller ordering
f the magnetic ions is not directly responsib e

for the dielectric anomaly, because this "
quadrupolar or erind & does not seem to alter the
dielectric polarizabilities of the electronic orbi-
tals along the c axis.

To e lain these properties we would have to in-
t d e couplings among some op ica -p

To exp ain e
ro uc

we ostulated d the strain modes. First, we pmo es an
that the zircon-type crystal lattice can
ceived as compose od of two sublattices which are
composed, respec ve y,tively of bvo molecular units
(denoted hereafter by A and 8). In each sublat-
tice, the constituent rare-earth ions are sur-

d d tetrahedrally by the oxygen ions, each
of which in turn is a menber of the neig

'
g

' hborin
t to note that, al-VO4 tetrahedra. It is important to no

u h the whole lattice has the symmetry 4
e is 42mmrnm the symmetry of each sublattice is I

which belongs to the piezoelectric c aclass. Hence,
ford to couplethe sublattice polarization can affor

with the homogeneous lattice strain gn throu h an ef-
of the form (1-fective piezoelectric tensor a;;, o

axis& m, 2-axis& m, -ax'is llcll4)

(0 0 0 0 a» 0)
0 0 0 —a 15 0 0

ka» —a» o o o o3

Since the sublattices are enantiornorphic to each
= —a Therefore, the

ani ert'ferroelectric polarization or the B externa1g
P=Pphonon mo e amde' amplitude) along the & axzs,

-P can couple with the lattice strain x = x, -x,-P~, can coup
through the sublattice piezoelectric or e " ior the "line-
ar piezo-op ' "-optic"') coupling constant a =a3j a3j

f thei.e., we should expect an interaction term o
It is to be noted that, for TbVO4 and

TmVO4, there is no piezo-optic componen w
'

linearly coup es e ', ' lo-1 th sof t strain x with P. Analo-
ousl the uniform polarization, P =P„+P~ (or

the A.,„external phonon mode amp i ulitude is as-
sumed to couple with, so to speak, the stag-

[ the A internal phonon mode
amplitude cf. Fig. 2(b)]; i.e. , the free energyamplitude, c .
should contain also a term of the form aPx.

%e now construct, taking also the dielectric
terms due o e ct th ollinear sublattice polariza-

ft '" a Helmholtz free energy otions into accoun, a
the following form, in which the '

hh the strain x is he
phase-transition parameter and on ynl the coeffi-
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(a) (b)

FIG. 2. The sublattice structure and the two types of
the polarization-strain-coupled motion of DyVO4 pro-
jected onto the a- plane. One sublattice is specified
by hatching; the polarization is denoted by' arrows and
the strain motion, by dashed lines. (a) The D f g syxFl-

metry motion, where the staggered polarization I'
couples with the uniform strain &. The A2„-symmetry
motion, where the uniform polarization P couples with
the staggered strain &.

latter sof tens primarily. Thus, y vanishes con-
currently with c as T approaches TD', i.e., the
antiferroelectric ordering or the &,&

external-
mode condensation should take place below T~,
although the &,&-mode frequency, the square of
which is proportional to the inverse ' clamped"
staggered susceptibility y", should remain con-
stant.

Furthermore, since the restoring force work-
ing on the oxygen octahedron in the staggered
strain motion [see, Fig. 2(b) j is regarded as com-
posed of joint contribution from both outside and
inside the VO, octahedron, we assume that

c =c +4~ (6)

cient c is temperature-dependent:

S'(P, P, x, x) =F,(P, x) +F,(P, x),
~V

E,(P, x) = 2 y 'P'+ aPx + ~ c x',

F,(P, x) =~y "P'+ aPx+ —,c x',

(1)

(la)

(1b)

where ~ corresponds to the &,„internal phonon
mode contribution. Then, the inverse suscepti-
bility actually observed for uniform field is, from
Eqs. (3), (4), and (6), given by

x y "y "&+(y" y*)a-'

a~�+(c~

+ a)y ' a'+ (c~ +b)y"
=k+0'c .

At

y = y" —a'/c

y =y* a'/c'-
(3a)

The actually observed elastic constant, which is
temperature-sensitive and vanishes as the tem-
perature approaches T&, is

tV ~V

c =c~-a'/y", (4)

which appears in the electric Gibbs function de-
rived from Eq. (1b). From Eqs. (3b) and (4), the
inverse "staggered" susceptlbi1ity at constant
stress is

~1t

X
( x)2( x E 2) ].&Z (5)

The la,ttice softenings can arise from a softening
of either y" or c in Eq. (3b). In our case, the

where y" is the inverse susceptibility at constant
staggered strain x, and y" is the inverse "stag-
gered" susceptibility which connects I' with its
conjugate staggered" field E: E& = —&&." The
symbol e stands for the "staggered" elastic
stiffness which connects x with its conjugate
"staggered" stress X.

Following some transformation procedures, the
function E can be converted into the elastic Gibbs
function of the form

G(P, P) = yxP2+ —'y—xP—

where the inverse susceptibilities under constant
stresses are

This relation was found to hold at all tempera-
tures by fitting the observed characteristics of
y to that of c, with constants k =4.9&&10' m/F
and & ' = 7.6 & 10 ' m /C'.

The value of & is estimated as -6.5&& 10" N/m',
by using k/k'= b, which is derived from Eq. (7).
Since c~=c = 1X10"N/m' for DyVO, at room
temperature, "c - 7.5&& 10" N/m' from Eq. (6).
This is in agreement with the stiffness value of
—1X 10'2 N/m' calculated approximately from the
one-dimensional Debye cutoff frequency which is
estimated from the A,„internal-mode frequency
in YVO, (=455 cm ' at room temperature). "

So far the temperature variation of any optical-
phonon mode frequency in DyVO, has not been re-
ported. ' In view of the I yddane-Sachs- Teller re-
lation, however, we anticipate that the A.,„exter-
nal mode which is infra, red-active should be tem-
perature-dependent around TD. The attempt to
observe the double hysteresis loop around T& was
not successful. The calculated threshold field for
the forced transition based upon the model is
larger by two orders of magnitude than that of
PbZrO, .

In the case of TbVO4 and TmVO4, the Jahn-Tell-
er-driven elastic softening occurs mainly for c66,
which will explain the reason why the dielectric
anomaly due to the piezo-optic coupling was not
observed in these crystals. For TmVO4, how-
ever, there is also a small variation' of c»-egg
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around TD, which will be responsible for the tiny
anoma, ly of &,.

The intervention of the extra short-range inter-
action bebveen the phonon modes represented by
the piezo-optic coupling may also be responsible
for the unexplained high-temperature tail in the
heat capacity data in DyVO4 and DyAsO, around
T»' and also for the discrepancy between the ob-
served TD values and the theoretical ones predict-
ed by the molecular-field theory.

In conclusion, the dielectric anomaly observed
at the Jahn- Teller transition temperature in
DyVO4 may be understood as a direct consequence
of the onset of an antiferroelectric ordering'
which is driven by the softening Bzg strain mode,
i.e., as an optical-mode condensation without its
softening. By following and extending the conven-
tional terminology, " this phenomenon may suit-
ably be called as the improper (or indirect) anti-
ferroelectricity.

The authors would like to thank S. Kagoshima
for the x-ray measurement of the lattice con-
stants, and Y. Fujii, H. Uwe, S. Miura, and
K. Oka for discussions.
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I emphasize the close similiarity in the inclusive production of genuine heavy resonances
compared to nonresonant hadron pairs. For small x and not too big p~ a simple relation
describes both with proper mass dependence of the P~ slope. Data on J-production sup-
port this picture.

In a recent measurement by Aubert et al. ' at
Brookhaven National Laboratory all pair combi-
nations of m', K', and P' were detected with a
double-arm spectrometer. ' The cross sections
for the simultaneously measured nine neutral hv'o-

body final states (v'm, m'K, . . . ) show aband
structure' when plotted against their invariant

mass, m. For production at rest in the c.m. sys-
tem, i.e. , x =2p, ~"/vs =0 and p~=0, cross sec-
tions in all channels decrease like exp(- 5m) over
the measured range of 1.5(m(5. 5 GeVjc'. No
simple relations such as the frequently' used
exp(-a. p, ) or exp(-b. p, ') describe these data
because a or b will depend on m. However, all
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