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An operator renormalization transformation is proposed for quantum spin systems
which is manifestly basis independent and preserves the fundamental symmetries of the

spin Hamiltonian. We develop a cumulant expansion suitable for noncommuting opera-
tors and illustrate the general techniques with several sample calculations.

During the past few years the renormalization-
group approach has been applied with consider-
able success to the study of the critical behavior
of generalized Ising models' and related classical
spin models. It is of considerable interest to gen-
eralize this approach to quantum spin models like
the spin-s Heisenberg and X-F models, and the
Ising model in a transverse magnetic field, where
the spin components satisfy the angular momen-
tum commutation relations. Recently several
workers' ' have suggested interesting generaliza-
tions for these quantum spin models of the renor-
malization transformation introduced by Niemeij-
er and van Leeuwen. ' However, these transfor-
mations require a specific choice of basis and it
is not clear whether the physical results derived
thereby are basis independent. Furthermore,
since symmetries of the Hamiltonian are used to
motivate the choice of basis, one cannot study
crossover effects from one symmetry to another.
For example, the transformation of Rogiers and
Dekeyser' and of Betts and Plischke' for the X-k
Hamiltonian, which generates Ising-like couplings,
does not preserve the limit of Heisenberg sym-
metry. Therefore, the Heisenberg model has to
be treated separately by a special procedure. '

In this Letter, we propose an operator formula-
tion of renormalization transformations for quan-
tum spin systems which preserves manifestly
their fundamental symmetries. The problem in

constructing a quantum renormalization transf or-
mation is to generalize, for spin operators, Kada-
noff 's idea that in the neighborhood of a phase
transition blocks or cells of spins act like single
spins. We propose to determine the relation be-
tween the site-spin operators cr; of the ith Kada-
noff cell of L spins (with m=1, 2, .. . ,L) where m

labels the cell sites, and the renormalized spin
operator of the cell' T;, by an operator t(7;,v; )
which acts on the joint Hilbert space of the site
and cell spins. The choice of t(~, , o~ ) is restrict-
ed by symmetry considerations and other require-
ments to be discussed below.

Given K„(o), the Hamiltonian for a system of N

spins on a lattice, the renormalized Hamiltonian
3C„,I, '(T) is determined by the operator equation

exp[A„'(r) + Ng „]= Tr, [exp(X„)T(T,v)], (1)

where Tr, denotes the trace with respect to the
spins o&, g& is a c number corresponding to the
self-energy per spin of the Kadanoff cells, and by
translation invariance

N/L

TP, v) =g t(7;, (r, )

We impose on the partition functions the usual re-
quirement of invariance under this transforma-
tion which implies the condition Tr, t(T„v,„)=1.

T~ j m ~

The renormalization transformation T (T,v)
should preserve the symmetries of Hamiltonians
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t(T»&G») p +T» V»Q(G» ) &

where
L

O&m
m"- j.

(2)

is the total block-spin operator, and o& and 7&

are the 2~2 Pauli matrices. Since o'q' has only a
finite set of eigenvalues o»(o» +2), with o, =L,L
—2, .. . , a general form for Q is a finite poly-
nomial,

@(o»') = & &.(o»'),

of order M=2L or 2(L —1) for L even or odd, re-
spectively. Next, we must consider how best to
constrain the coefficients q to impose the phys-
ical requirement that t strongly favors confi. gura-
tions with &-& and 0; aligned.

We suggest that t(~„o») be chosen so that its
eigenvalues be unity when the spins a& and 7; are
added i.n "parallel" to form the maximum total
angular momentum for a;+&& for each value of
o&'. This gives a closed expression for any block
size I.,

t(», ;) =2+5;;[( + »')'"-1] ' (3)

or Q{o»') =1/2o, on the eigenstates of o,'. For in-
stance, withl. =3 this is equivalent to q0+15q, =-',

1
and. /0+3/~ = g.

Our transformation (3) seems to be the most
natural quantum version of the majority-rule
transformation of Niemeijer and van Leeuwen.
In both cases, the transformations are undefined
for zero-total-spin configurations of blocks with
an even number of spins I-, and we supplement
our definition (3}by setting t =

& for o» =0.
For any choice of the coefficients, it is easily

seen. that if X„ is in the class of Ising Hamilton-

X„within a universality class. For example, if
&„ is invariant under rotations, then T (r, o) should
also be chosen to be rotationally invariant in the
combined (~,o) space. Actually, it may often be
desirable that T(r, o) have a higher degree of sym-
metry than &, so that the transformation can be
used globally to connect Hamiltonians with differ-
ent symmetries; e.g. , a rotationally invariant
TP, o) can also be applied to Hamiltonians which
are invariant only under rotations about a single
axis like the Ising and X-Y models [see Eq. (15)].
Therefore, assuming rotational invariance and
permutational symmetries on the individual spins
o»„ in a block (with m =1, . . . , L), the most gener-
al transformation for spin-~ objects is

ians, we recover the well-known renormalization
equations for the Ising model. Hence another pos-
sible choice of the coefficients q' reproduces ex-
actly the majority rule of Niemeijer and van
Leeuwen for Ising models. For example, with
L =3, this gives slightly different coefficients:
q0+15q, =~ a dq0+3q, =~. However, our tra s-
formation (3) gives nearly as good results for the
cumulant expansion of the Ising model.

It is interesting to note that the transformation
(3) has negative eigenvalues -1/o, for anti-aligned
states. Instead we could have chosen these eigen-
values to be zero and obtained

q(o ') =-'[(o '+1)'"+1] ' (4)

This choice [Eq. (4)] corresponds to a generaliza-
tion of Kadanoff's transformation for the Ising
model

t(v„o») =lim [exp(Po; 7»)/Tr, , exp(Po;v'»)']. (5)

Although this is an appealing way' to force the
alig»nnent of 7 and o, for the Heisenberg (or Is-
ing) model it fails at zero temperature to map the
ground states of & into those of »L'.

In order to map" the d, -fold degenerate ground
states In) of &„ into the d, '-fold degenerate ground
states In') of &„»', the zero-temperature limit
of Eq. (1) should become

, Z In'&&n'I =—g &nlT(7', o)l n&,
0fl =1 d0

which gives an expression for the projection oper-
ator onto the ground states of +»L'. For the iso-
tropic ferromagnetic Heisenberg model the de-
generacies are d, =N+1 and d, ' =N/L +1, and we
can prove .Eq. (6), provided that

&nlq(o ) ln) = 1/2L

[which is satisfied by our transformation (3)], by
showing that as the temperature goes to zero any
two spins T; and T, become totally aligned:

&T .~~ )
Trt exp(+»»Il )~»'~i

Tr, exp(&„»')

However, for the Heisenberg model some diffi-
culties may arise in describing the ordered phase.
We know that in order to have spontaneous sym-
metry breaking" at zero temperature, a magnet-
ic eigenvalue X„=I is required. In the limit N/I.- ~ we can demonstrate that there is an eigenval-
ue XH =I- by studying the zero-temperature condi-
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In the cumulant expansion, the Hamiltonian + is
separated in the form

X=&0+V, (10)

Q(nlrb, 'Q a,o, l ), (9)+ n

for the odd-spin interactions 0& and 0, with their
infinitesimal couplings h, and h, '. The argument
is almost identical to that for the Ising model,
with the important exception that it breaks down

for finite N. Indeed, we found for the two-cell
cluster (N/L = 2) that &„=& (L +1)& L, so that in
order to do finite-lattice calculations for the or-
der parameter, new techniques may have to be
developed. Also, note that for other systems like
the Ising model in a transverse field, we have not
demonstrated that Eq. (6) holds. Perhaps less
symmetric forms for T will have to be chosen in
some cases.

where 0 is the sum of the corresponding Hamil-
tonians for each cell, and V contains all the inter-
action terms among cells. Then the interaction V

is treated as a perturbation by expanding the
right-hand side of Eq. (1) in powers of V. To take
into account that , and V do not commute for
quantum spin systems, we apply the identity

exp(&, +V') =exp(&,)r exp[f, 'd&V(&)], (11)

where

V(A.) = exp(- AX )V exp(A. K )

and V' is the time-ordering operator with respect
to the variable A. . Substituting Eq. (11) in Eq. (1),
and taking the logarithm of the operators on both
sides of the resulting equation, we obtain"

X»z, '+Ng„=In Tr, exp(K, )T +In[ Q f dA, f .dA. , ~ ~ f " 'dA. „(V(X,)V(A.,) ~ ~ V(A.„)T)],

where the angular brackets denote a generalized
thermal average for an operator A with respect
tO the Cell HamiltOnian 0:

(AT ) =Tr, [exp(X,)AT ]/Tr, [exp(SCO) T ]. (14)

Equation (13) is a linked cluster expansion in the
interaction V, i.e., only cells which are connect-
ed by spin interactions contribute to the sum, and
the classification of these contributions in a given
order is the same as for the Ising model. The
calculations can be readily carried out in the bas-
is which diagonalizes each cell Hamiltonian.

We are presently engaged in calculations on
several quantum spin systems, and some of our
results are summarized below. Consider the ani-
sotropic Heisenberg model

X = Q Ki((Ti (T +(T~ 0 .) +Kii(7; 0
&ij)

with nearest-neighbor interactions in the region
K&/K~~~- 1. We -have evaluated the cumulant ex-

pansion to first and second orders on a triangular
lattice. In Fig. 1, the specific heat is plotted for
q =0 and q =0.7. On the Ising axis (q =0) we re-
produce the results of Niemeijer and van Leeu-
wen. ' For every value of q&1, there is a critical
value K~~'(q) of K

~~
that maps into the Ising fixed

point (see Fig. 1, inset), at which the specific
heat and the susceptibility diverge. The steep
rise of the critical line away from the Ising axis
is in accordance with the high-temperature ser-
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FIG. 1. Specific heat of the anisotropic Heisenberg
model Eq. (15) as a function of &ll in second-order
cumulant expansion. The critical line is shown in in-
set.

ies for a square lattice. " For K~~ +Kg (rj) and q
& 1, there will be spontaneous magnetization in
accordance with a recent existence theorem. "
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TABLE I. Free energy of the Heisenberg model. to than'; Michael Plischke for providing us with
the Pade approximants in Table I.

K Renormalization
High-temp.

series'

0
0.1
0.2
0.3
0.4
0.5

0.693
0.720
0.796
0.915
1.066
1,237

0.693
0.721
0.794
0.901
1.032
1.182

'Free energy generated by M. Plischke (private com-
munication) by Pade approximants from the series of
Rushbrooke, Baker, and %'ood (Ref. 14).

In second order a fixed point in the isotropi. c
Heisenberg subspace appears and corresponding-
ly a critical point along the Heisenberg axis. By
contrast, in first order there is no Heisenberg
fixed point and the critical line turns away to-
wards infinity as the Heisenberg axis is approached
Also, calculations with a, cluster of two cells on
a square lattice with four spins each do not give
the Heisenberg fixed point either, which there-
fore may be a spurious effect of the second-order
cumulant expansion. The results for the free en-
ergy of the Heisenberg Hamiltonian in the above-
mentioned cluster calculation are given in column
1 of Table I to be compared with the high-temper-
ature-expansion results' in column 2.

These calculations give an intriguing glimpse of
the new domains in which the quantum renormal-
ization transformation can be applied. " Particu-
larly interesting is the possibility of giving a
global description, relating models with differ-
ent symmetries as in the example of the aniso-
tropic Heisenberg model. Detailed calculations
are being pursued and will be presented in a sub-
sequent article.
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