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Melting-Curve Extrema from a Repulsive "Step" Potential~

D. A, .Young and B. J. Alder
Lawrence Livermore Laboratory, University of California, Livermore, California 94550

(Received 14 March 1977)

Molecular dynamics calculations in two dimensions for particles interacting with a re-
pulsive "step" potential show melting-curve maxima and minima as well as solid-solid
phase transitions. These features are similar to those observed in the phase diagram of
cesium and cerium.
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FIG. 1. The phase diagrams of cerium (a) and cesium
(b). The high-pressure phases Ce 6' and Cs IV are not
well characterized.

The melting temperatures' of most elements
and simple compounds increase monotonically
with pressure. Those few phase diagrams which
show maxima and minima in the melting tempera-
ture are usually ascribed to the coexistence of
loosely packed solid phases with more dense liq-
uids, as in the case of water. Two of the most
interesting phase diagrams, however, are those
of the elements cesium and cerium, in which
close-Packed solid phases are in equilibrium with
more dense liquids. The cerium phase diagram'
[Fig. 1(a)j, with a melting-temperature mini-
mum, shows in addition an fcc-fcc isostructural
phase transition which ends in a critical point.
The cesium phase diagram' [Fig. 1(b)j, with two
closely spaced melting-temperature maxima,
shows a similar fcc-fcc phase transition which,
however, terminates in a triple point on the melt-
ing curve. Analysis of shock-wave experiments
on rare-earth elements suggests that similar
melting-curve extrema are not uncommon among

the elements. '
The solid-solid isostructural transitions strong-

ly suggest that upon compression the valence
electrons shift into vacant orbitals. ' In cesium
the transition has been ascribed to a es - 5d elec-
tron promotion, and in cerium to a 4f- 5d pro-
motion. In both cases the effective atomic size
in the solid undergoes an abrupt decrease at the
transition. In the liquid, however, the configura-
tional disorder allows the electronic shift to oc-
cur over a broad pressure range, with the result
that the liquid is more dense than the solid until
the solid transition pressure is reached. "

A number of statistical-mechanical models'
have been proposed which exhibit some of the
properties of the Ce and Cs phase diagrams, and
which invoke interparticle potentials which allow
the particles to "collapse" under compression.
These models all make important approxima-
tions, such as the use of cell models or perturba-
tion theory, and it is not clear to what extent the
conclusions are thereby invalidated.

In this Letter we describe molecular dynamics
calculations in which no assumption, other than
the form of the interparticle potential, is made.
Thus a rigorous relationship between the poten-
tial and the resulting phase diagram is obtained.

The potential cp(r) between two particles sepa-
rated by a distance r is chosen to be a repulsive
"step" or an inverted square well with a hard
core:

y(r) =~, 0 ~r&o,

y(r) = e, o & r(co,
y(r) =0, cur~

At low temperatures (kT «e) and pressures the
particles all have an effective diameter co, while
at high pressures and temperatures the particles
have an effective diameter 0. At intermediate
pressures and temperatures the transition be-
tween these limits can be expected to lead to
phase transitions similar to those shown in Fig. 1.
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The molecular dynamics calculations have been
carried out in two dimensions in order to see
clearly the various solid-liquid phase boundaries,
since the solid metastability found in three-di-
mensional hard-sphere systems' makes the melt-
ing point difficult to locate. We expect no qualita-
tive difference between the phase diagrams in two
and three dimensions. In these calculations, 270
particles are arranged in a triangular elose-
packed lattice with periodic boundary conditions.
In each calculation, the reduced volume V*= V/V,
(V, =No%3/2), reduced temperature T*=OT/e,
and step width c are fixed, and the reduced pres-
sure p*=pV, /Ne, the particle mean-square dis-
placement (R')/o', and the coefficients A„ in the
expansion' of the Helmholtz free energy are com-
puted.

For the purpose of discussing the phase dia-
gram, it is useful to divide the temperature into
three regions: (I) 0.5s T*~~, (2) O. 1s T*&0.5,
and (3) 0 ~T*& 0.1.

For temperatures 0.5& T* , second-order
perturbation theory accurately represents the
phase boundaries. The Helmholtz free energy A
and the pressure p are then given by

A(V*, T*) A,(V*, T+) A,(V+) A, (V*)
Nk T NkT T* T*

p(V, T,)V p (V, T,)V p (V,) p (V,)
NkT NkT T* T~

where p, is the hard-disk pressure and A, is the
hard-disk free energy obtained by integrating p,.
The perturbation terms A., and A., have been com-
puted in the hard-disk (T*=~) limit for a series
of c values and over a range of volumes. They
have been fitted with smooth functions and differ-
entiated to determine p, and p,. Higher perturba-
tion terms can be computed accurately only if A,
is obtained at finite temperatures and is expanded
to obtain A3) A4

For the va, lues of the step width investigated,
namely 1,05 &c ~1.5, A, varies monotonically
from 3.0 (half the number of nea, rest neighbors)
at V*=1.0 to zero at low density. Strong curva-
ture is found in both A, and A, in the solid volume
range 1 ~ V* &1.26, and this lea.ds to van der
Waals loops and solid-solid phase tra, nsitions
which terminate in critical points near T*=1.0.
As c increases, the critical point of the solid-
solid transition approaches the melting curve and
eventually intersects it for c —= 1.30, The curva-
ture in A,(V*) occurs at volumes where the num-

ber of neighboring particles separating from each
other to distances co is increasing rapidly. On
the basis of a simple cell model, the volume cor-
responding to this point should be V*=c', but the
observed volumes are found to be much smaller
than this. Thus c =1.2 corresponds to a transition
centered at V* =1.13 and c =1.3 to a transition
centered at V*=—1.2. The surprising fact that the
intersection of the solid-solid transition and the
melting curve occur's at c —= 1.3 rather than c —= 1.1
as would be expected from the Lindemann melting
law is no doubt connected with the long-wave-
length modes characteristic of the two-dimen-
sional solid. These modes lead to divergent
mean-square displacements' and broad peaks in
the pair distribution function. In three dimen-
sions, where the collective fluctuations are much
smaller, we expect a more realistic relationship
between the step width and the volume at which
the corresponding phase transition occurs.

Comparison of A, (V*) values obtained from
molecular dynamics with those computed from
accurate pair distribution functions' shows good
agreement. This indicates that number-depen-
dence corrections are small, and that the 270-
particle system is adequate for accurate calcula-
tions of phase boundaries.

In the temperature range 0.1& T*~0.5, second-
order perturbation theory is no longer accurate,
and direct finite-temperature calculations must
be made to determine phase boundaries. The
low-temperature solid-solid phase transition was
clearly indicated by van der Waals loops in the
isotherms. The melting curve was more difficult
to determine, and the mean-square displacement
(R')/0 proved to be useful in distinguishing the
two phases. In the solid phase, (R')/v' will rap-
idly approach a constant value with time, where-
as in the liquid phase (R') /o' will increase line-
arly with time as the particles diffuse. Extensive
computer runs were required to map out the
melting-curve extrema which occurred in this
region.

For T*~ 0.1 molecular dynamics calculations
are no longer useful because the system takes
too long to reach thermodynamic equilibrium.
Instead, phase boundaries in this region are com-
puted by extrapolation of rigorous T*=0 results
to higher temperature. Thus the melting curve
near T*=O represents a solid phase of disks of
diameter cv in equilibrium with the correspond-
ing fluid, and the low-temperature melting curve
is then simply the high-temperature curve scaled
down by a factor of c', or p *=7.8 T*/c'. This
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FIG. 2. The phase diagram for c =1.2. The solid
curves represent reliably determined phase boundaries
obtained by various methods. Circles indicate finite-
temperature molecular dynamics determinations of
phase transitions. The dashed curves indicate uncer-
tain phase boundaries.

FIG. 8. The phase diagram for c = 1.5. The solid
curves represent reliably determined phase boundaries
determined by various methods. Circles indicate finite-
temperature molecular dynamics determinations of
phase transitions. The dashed curves indicate uncer-
tain phase boundaries.

extrapolation agrees well with the observed melt-
ing curve at T*&0.1, as seen in Figs. 2 and 3.
In addition, the solid-solid phase transition at T*
=0 can be determined as the equilibrium between
the high-density solid at V*=1 and the low-dens-
ity solid at V* = c', with the result that p* = 3/(c'
-1). This is in good agreement with the extra-
polation of perturbation theory to lower tempera, -
tures, also as shown in Figs. 2 and 3.

The phase diagrams in Figs. 2 and 3 show iso-
structural solid-solid phase transitions and melt-
ing-curve extrema, thus confirming the sugges-
tion that these phenomena are intimately linked
and that they can be reproduced by the simple
step potential. The most significant difference
between the two diagrams is that for c = 1.2 the
solid-solid transition ends in a critical point,
while for c = 1.5 the transition intersects the
melting curve in a triple point. This difference
also corresponds to the main difference between
the Ce and Cs phase diagrams. The analogy is
not precise, however, because the solid-solid
phase trajectories in the model do not point at or
intersect the melting-curve minimum, as they do
in Ce and Cs. This lack of qualitative agreement
could be due to the simple, purely repulsive po-
tential used.

The phase diagrams in Figs. 2 and 3 can be

made somewhat more realistic by adding to the
repulsive step potential an attractive term. If a
square well of width 1.5o is added to the c = 1.2
step potential, the effect on the phase diagram
can be computed to first order in perturbation
theory. Thus, if the depth of the square well is
approximately three times the height of the step,
then the phase boundaries are shifted downward
so that the melting-temperature maximum falls
below p* = 0 and is eliminated. Although the solid-
solid phase transition is only slightly affected by
the perturbation, the result is much closer to the
real cerium diagram. A similar transformation
could introduce a solid-liquid-vapor triple point
into the c = 1.5 phase diagram if a square well
wider than 1.5o were added to the potential.

In conclusion, it is clear that the step potential
gives rise to phase diagrams qualitatively simi-
lar to those observed in Ce and Cs. Step-poten-
tial calculations in three dimensions will be pre-
sented in a future publication.

We thank Mary Ann Mansigh for the computer
programming.

*Prepared for U. S. Energy Research and Develop-
ment Administration under contract No. %-7405-Eng-

1215



VOLUME 38, NUMBER 21 PHYSICAL REVIEW LETTERS 23 MAY 1977

48.
W. Element, Jr. , and A. Jayaraman, Prog. Solid

State Chem. 3, 289 (1966); J. F. Cannon, J. Phys.
Chem. Ref. Data 3, 781 (1974); D. A. Young, Lawrence
Livermore Laboratory Report No. UCBL-51902, 1975
{unpublished) .

A. Jayaraman, Phys. Bev. 137, A179 (1965); E. A

King, J. A. Lee, I. R. Harris, and T. F. Smith, Phys.
Rev. B 1, 1380 {1970).

G. C. Kennedy, A. Jayaraman, and B. C. Newton,
Phys. Rev. 126, 1363 (1962); A. Jayaraman, B. C.
Newton, and J. M. McDonough, Phys. Rev. 159, 527
(1967); D. B.McWhan and A. L. Stevens, Solid State
Commun. 7, 301 (1969).

B. Grover and B.J. Alder, J. Phys. Chem. Solids
35, 753 (1974); W. J. Carter, J. N. Fritz, S. P. Marsh,
and B.G. McQueen, J. Phys. Chem. Solids 36, 741
(1975).

5A. W. Lawson and T. Y. Tang, Phys. Rev. 76, 301
(1949); R. Sternheimer, Phys. Bev. 78, 235 {1950).

Y. Kuramoto and H. Furukawa, Prog. Theor. Phys.
47, 1069 (1972); D. A. Young, J. Chem. Phys. 58, 1647
(1973); T. Yoshida and S. Kamakura, Prog. Theor.
Phys. 52, 822 (1974); C. E. Hecht and J. Lind, J. Chem.
Phys. 64, 641 {1976};J. M. Kincaid, G. Stell, and
E. Goldmark, J. Chem. Phys. 65, 2172 (1976); E. Brin-
deau, B. Levant, and J.-P. Hansen, "A Simple Model
for Melting Curve Maxima, " to be published.

B.J. Alder, W. G. Hoover, and D. A. Young, J.
Chem. Phys. 49, 3688 {1968).

B.J.Alder, D. A. Young, and M. A. Mark, J. Chem.
Phys. 56, 3013 (1972).

D. A. Young and B.J. Alder, J. Chem. Phys. 60,
1254 (1974).

D. G. Chae, F. H. Ree, and T. Ree, J. Chem. Phys.
50, 1581 (1969).

Cr" Coupling to Lateral Proton Configurations in KH2As04

J. Gaillard and P. Gloux*
Centre d'Etudes Nucleai~es de G~enoble, Departement Recherche I'ondamentale 85X,

Il-38041 Gxenoble Cedex, I'vance

and

K. A. Muller
IBM Zurich Research Laboratory, CII-8803 Ruschlikon, Szeitzexland

(Received 28 March 1977)

Electron-nuclear double-resonance (ENDOR) spectra at 1.5 K of Cr +{3d ) on tetrahedral
As + sites in KH2As04 show lateral Slater protonic configurations. The d„2 ~2 function
couples with the two near protons. The reorientation of this unit in the four possible lat-
eral configurations occurs in the paraelectric phase. The observed reorientation times
are discussed.

The coupling of lattice defects to collective
modes is a subject of considerable interest. Re-
cently, linear interactions of slowly relaxing de-
fects with soft modes have been considered as a
possible cause for slow central-peak dynamics
near structural phase transitions by Halperin and
Varma. ' EPR investigations of Cr' in KH,As04
have shown the existence of slow local reorienta-
tion times shifting proportional to the Curie tem-
perature Tc.' The two slow relaxation times v

and T& and the symmetry of the x'-y' ground-
state wave function indicated a Halperin-Varma-
type center, ' i.e. , a linear interaction with the
soft protonic mode. Hereafter, and electron-nu-
clear double-resonance (ENDOR) study is report-
ed which aimed at elucidating this interaction with
the protons. Its main result is that the d„2 p func-
tion couples simultaneously with the two near pro-
tons in lateral Slitter configurations at low tem-
peratures, which proves the existence of a re-

orientation among these four configurations -a,

unique situation not reported before in the high-
temperature phase of this class of hydrogen-
bonded ferroelectrics.

The Cr' -doped KH,As04 samples used in this
study were identical with the ones used previous-
ly. ' The proton ENDOR spectra were run at 1.5
K in an X-band spectrometer as described else-
where. 4 A typical spectrum for Hll c upon satura-
tion of the center of the single paramagnetic res-
onance line is shown in Fig. 1. It is seen that,
symmetrically to the line for very distant pro-
tons, there are two pairs denoted by I3",3 ) and
{4',4 ) which could be identified with two far pro-
tons of the CrO, ' tetrahedron. The lines (2', 2 }
and 1 result from two near protons of the tetra-
hedron. The 1 transition occurs at too low a fre-
quency to be observed. The above assignments
were obtained from the angular variations re-
corded. The sign + or —indicates the electronic
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