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Some Exact Multipseudoparticle Solutions of Classical Yang-Mills Theory
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I present some exact solutions of the Polyakov-Belavin-Schwartz- Tyupkin equation I»=I"» for an SU(2) gauge theory in Euclidean space. My solutions describe a system with
an arbitrary number of pseudoparticles, with arbitrary scale parameters and arbitrary
separations, arranged along a line. The action for an n-pseudoparticle solution is pre-
cisely n times the action for a single pseudoparticle.

Recently Polyakov' made the remarkable sug-
gestion that localized, finite-action solutions of
the classical Euclidean equations of motion may
dominate the Euclidean path integrals of quantum
field theory. Belavin, Polyakov, Schwartz, and
Tyupkin (BPST) described such a localized, fi-
nite-action solution for non-Abelian gauge theo-
ries'; it has become known as the pseudoparticle.

Here I will describe a much more extensive
class of exact, analytic solutions for a classical
SU(2) gauge theory in Euclidean space. My solu-
tions have arbitrary integral values of the topo-
logical charge discovered by Belavin, Polyakov,
Schwartz, and Tyupkin. They describe an assem-
bly of the BPST pseudoparticles, with arbitra"~
scale parameters and arbitrary separations, but
arranged along a line. My solutions may help
clarify many-pseudoparticle effects which, as
Polyakov suggested, may play an important role
in the strong interactions.

Belavin, Polyakov, Schwartz, and Tyupkin
showed that the fields of minimum action for
fixed boundary conditions are solutions of F&„
=F„,. If F„„=F„„then in view of the Bianchi
identity D„F„,=0, the field equation D„F„,=0 is
also satisfied. My solutions will all satisfy F„„

pVo

I will seek solutions of F„,=F„, that are invari-

ant under three-dimensional rotations combined
with gauge transformations. I will call this a
cylindrical symmetry, because it determines the
dependence of the fields on the three-dimensional
polar angles and leaves unknown only the depen-
dence on the three-dimensional radius r and the
Euclidean time t. The most general gauge field
with cylindrical symmetry can be written as fol-
lows:

A a A0x'
0 0r

Here, j and k refer to the three spatial dimen-
sions, and a is the isospin index. The precise
definitions of q„y2, A„and A, are chosen for
future convenience. These functions depend only
on r and t. I will find the most general solution
of F„„=F„„that can be written in the form (1).

The Ansatz (1) is consistent with gauge trans-
formations generated by a unitary matrix U(x, t)
=exp[if(r, t)x T], where f is arbitrary and T, are
the generators of SU(2). This is an Abelian sub-
group of the full gauge group. For the moment I
avoid a choice of gauge. Given (1), one readily
calculates the field tensor F„,'= B„A,'- B,A„'

+abc A bA C.
V

(b.,r' x.x,)-.X X~
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(2)

(where ao denotes &/Bt and s, denotes 8/Br). The form of (2) suggests that I regard q as a charged
scalar interacting with the two-dimensional Abelian gauge field A„, with covariant derivative D„y,
= ~„y,. + c„.A&y, With integration over the polar angles, the action turns out to be

A=4 fd3xfdtF„„'F„„'=Sljf dtf dr[2(D& jtj, ) +3 r F„,'+ —,'r (I. —cp,'- @2 )'],

where F„, is of course B„A,—B,A„. This is very nearly the usual action for the two-dimensional
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Abelian Higgs model; in fact, in curved space the action for the Abelian Higgs model is

fd'kg[ 2g"-'D„q, D,.y, +-,'.g" g' F„„E 8+-,'(1 —y, '- q2')'j,

which agrees with (3) if g"' =r'5""
T. his metric

corresponds to a space of constant negative cur-
vature.

I now consider the equation E„„=E„,or, equiv-
alently, E0 = z f &„F&, Equating corresponding
terms in (2), I find

0@1 0@2 1@2 A19 1 p

111++192 ( OP2 +09 1) 1

r'(sQ, —s,A, ) = 1 —y, ' - cp,'.
(4)

2V2( I f gf~2$ (5)

Let us first note that this equation possesses a
remaining gauge invariance. Consider the trans-
formation

I will find the general solution of these equations.
The key is the choice of gauge. I set B„A„=O, so
that A„=e„„s„(for some g. The first two equa-
tions in (4) now become

[s.- (s.()j @,=[s,- (sA)j v. ,

[s, -(s,q)j q, =-[s.- (s.q)j q. .

If one lets y, =e X» @2=e X» one finds simply

~0X1 ~lX2 y

ajX1= ~0X2 ~

These are the Cauchy-Riemann equations, which
say that f=y, —iy2 is an analytic function of z = r
+it.

It remains to consider the third equation in (4).
It becomes

Equation (7) is called Liouville's equation. ' Its
general solution can easily be found by using con-
formal invariance. Let p, (z) be any particular
solution of Liouville's equation; for example,
p, (z) = —ln[ —,'(I - z*z)j. Now, consider an arbi-
trary analytic function &o(z). The Laplacian with

respect to &u is V„'= ~dz/d111 ~'V, ' and p„as a
function of v, satisfies

V„p,(&o) = ~dz/dw~ e ~'

This is Liouville's equation (7) except for the fac-
tor I dz/d1ol'. Letting p(01) =p, (~) —2 In ldz/d10l2,
and using the fact that V'lnldz/du l2 =0, I find that
p(111) satisfies the Liouville equation V~'p =e'p.
Thus, if g is any analytic function, p(z) =- in[2(1
-g*g) j+-,' ln I dg/dzl' satisfies Liouville's equa-
tion. This is, in fact, known to be the general
solution of Liouville's equation.

Returning now to (5), the various singularities
cancel if and only if (dg/dz)/f has neither zeroes
nor poles in the right half plane. This means
that, up to a gauge transformation of type (6), the
most general nonsingular solution of (5) is

(8)

For g to be nonsingular, I must require ~g~ =1
for r=0 and ~g~& I for r&0. The most general
analytic function with these properties and smooth
behavior for z-~ is

f- fh,

p- g —2 ln(h&), (6)

where h(z) is an analytic function. Because
V'lnh*h =0 for any analytic function h (as long as
h has no zeroes), (5) is invariant under this
transformation. This invariance exists because
the gauge condition B&A&

——0 permits transforma-
tions A„-A„+B„X,where V'A. =O. If h does have
zeroes for r & 0, then (6) introduces isolated sin-
gularities at those zeroes.

In order to solve (5), let P = lnr ——,
' ln( f *f)+p,

where p is a new unknown function. By using the
fact that 'V lnf *f=0 for any analytic function f,
except for isolated singularities that I momen-
tarily ignore, (5) becomes simply

g2 e2p

where the a, are an arbitrary set of complex num-
bers (some perhaps equal) constrained only to
have Rea, & 0. (8) and (9) provide the most gener-
al solution of F„„=E&„with cylindrical symmetry
and finite action.

Let us now consider the physical content of
these solutions. In view of the gauge. invariance
(6), the only gauge-invariant property of f is the
location of its zeroes in the right half plane. The
zeroes of f in the right half plane may therefore
play a central role.

If h = I in (9), f has no zeroes and an easy cal-
culation shows that this solution is a gauge trans-
form of the vacuum. If h =2, f has precisely one
zero in the right half plane. This field describes
the BPST pseudoparticle (but in a different gauge).
The imaginary part of the zero of f determines
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the location of the pseudoparticle along the time
axis, while the real part determines the pseudo-
particle scale.

For general k, the total multiplicity of the ze-
roes of f in the right half plane is always k —1.
The natural generalization of the comments in the
last paragraph would be that for general k, my
solution describes k —1 pseudoparticles, with
real and imaginary parts determined by the ze-
roes of f.

I will verify this, but first there is a counting
problem to consider. For k =2 my solution (8)
and (9) involves four real parameters —the real
and imaginary parts of a, and a,. But the BPST
pseudoparticle, with cylindrical symmetry, has
only two parameters —the position along the time
axis and the scale. For general k my solution has
2k real parameters, but I expect the physics to
involve only k —1 positions and k —1 scales. The
explanation is that my solution (8) and (9) still
possesses a remaining two-parameter gauge in-
variance. If one replaces f and g by

C+g
g c*g+1'

where ~c~ & 1, then g is still of the form (9), and
the transformation from f and g to f and g js a
gauge transformation of type (6). Also, f and f
have the same zeroes. Consequently, the physics
in (8) and (9) depends not on the k complex num-
ber a,- but only on k —1 complex functions of them—the zeroes of f.

I now wish to verify two facts: That the solu-
tion (8) and (9) always has a topological charge
equal to k —1, and that, as the zeroes of f be-
come widely separated, my solution describes
k —1 widely spearated, BPST pseudoparticles.

I first consider what happens as the zeroes of
f become widely separated. It is essential to
choose the right gauge. I et us keep fixed one of
the zeroes of f, n„whi cIhassume to be a sim-
ple zero, and let the distance from n, to the other
zeroes, n„.. . , e, become large. In a general
gauge, there is no simple relation between the
zeroes of g and the zeroes of f, but by a gauge
transformation of type (10), I may always arrange
it so that n, is one of the zeroes of g. It will be
a double zero, since f=dg/dz has a simple zero
at n, . So g has the form

The P,. are complicated functions of the n, But
as the differences

~
n,. —n,

~
become large, the

differences ~P,. —o., ~
also become large. Then for

z in the neighborhood of n„ the entire factor
m[(P,. -z)/(P, . *+a)] may be set equal to the con-
stant m(P,. /P, *). Dropping this phase factor I find
that as the

~
n,. —n, ~

become large, with z fixed,
I may approximate g by [(n, —z)/(n, *+z)]. But
this is the special case of (9) for k =2, which is
already known to describe a single BPST pseudo-
particle with scale and location controlled by a,.
Thus, in this limit, my solution describes a sys-
tem of isolated BPST pseudoparticles, one for
each zero of f. Hence, the topological charge
(x~m )Jd'xF»F„, equals the number of zeroes of

f, at least if those zeroes are widely separated.
Since a solution with nearby zeroes of f can be
reached continuously from a solution with widely
separated zeroes, the topological charge equals
the number of zeroes whether they are separated
or not.

It is instructive to derive this result in a more
direct way. From expression (2) for E„„I find
that the four-dimensional topological charge
(8'm') Jd'xF „,E„,becomes

(1/2m)fd x[eq, e„Dq(p,D.,@,. + ,'eq, Eq—p(1—y )] .
By algebraic manipulations this can be rewritten

(I/2w) Jd'x[a„(e„e„„y,.D, y, )+ ,'e„,F„„].—.

The first term is a total divergence, and so can
be written as a boundary integral which vanishes
because for my solutions D„y, =0 at the boundary
of the space. The second term is also a total di-
vergence, but its integral does not necessarily
vanish —it is the usual topological charge of the
Abelian Higgs model. Thus for cylindrically sym-
metric fields, I can identify the four-dimensional
topological charge discovered by Belavin, Poly-
akov, Schwartz, and Tyupkin with the two-dimen-
sional topological charge of the Higgs model.

For the Higgs model, (1/4m) Jd'xe„„F„,equal
1/2m times the change in phase of cp = cp, —iy,
around a contour that encloses the region in which
the fields differ significantly from the vacuum.
With y =fe ~, this is

1 d 1 d 1 dgds —In(fe~) = . ds —lnf+ . ds —,
27TZ ds 27ti ds 2mi ds. '

where ds is the line element along the contour.
The second term vanishes identically (since g,
unlike inf, is a single-valued function); and the
first term, by the argument principle of complex
variable theory, is equal to the number of zeroes
of f within the contour. This shows that the charge
equals the number of zeroes of f.
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A final remark is in order. My solutions pos-
sess finite action and finite E„,', but in the gauge
in which I am working, the four-dimensional
gauge field A„' is actually singular at r =0. This
is obvious from (1), where I see that the field
is nonsingular only if p, =1 and y, =0 at r =0.
It is necessary to perform a gauge transforma-
tion on the solutions to satisfy these conditions;
such a transformation always exists because I
have y'=I at r =0. In the language of (6), (8),
and (9), a suitable gauge function is

iy =h —e'dg
dz

give nonsingular four-dimensional gauge fields
that satisfy the equations of motion.

I wish to thank S. Coleman, R. Jackiw, C. Reb-
bi, B. Julia, and L. Dolan for thoughtful discus-
sions. This work was initiated at the Aspen Cen-
ter for Theoretical Physics.

h=-i g(a, *+z)'.

Thus,

2y

(1-g*g)(h *h)'~'
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The structureless exp(1.8t) behavior of recentpp data for It l&2 GeV, ~s =53 QeV, is
shown to be in sharp disagreement with dip-structure predictions from popular models of
diffraction. Flip amplitudes, real parts, and large-angle effects are quantitatively insuf-
ficient to resolve the discrepancy. Modifications of some familiar ideas on diffraction
(like eikonalization) seem necessary.

Recently, the CERN-Hamburg-Orsay-Vienna
(CHOV) collaboration published accurate results
on pp elastic scattering at v s = 53 GeV extending
out to I t I =9 GeV'. ' This is a substantial exten-
sion of previous results, which were limited to
ItI ~3 GeV'. ' The purpose of this Letter is to

show how the I, dependence of the new data neces-
sitates modification of current ideas on diffrac-
tion scattering.

The CHOV data have two noteworthy features
(see Fig. 1): (i) dv/dt has the well-known dip at
I,I, I= 1.3 GeV', but there is no additional second

dip below I t I=7 GeV'. (ii) The data are essential-
ly a structureless exponential beyond the first
maximum (at Iti=2 GeV') with a slope B,=1.8
GeV ' "onsiderably smaller than a typical slope
B,=12 GeV ' in the forward peak.

The above features are in sharp conflict with
the expectations of currently popular models' of
high-energy diffraction scattering (which I shall
also refer to as the Pomeron). I now demonstrate
this disagreement by looking at various models

which have some physical basis and more or less
agree with previous (It1~3 GeV') data.

The pp elastic amplitude is customarily given
by'

A(s, t) = P(s, t) + C(s, t).

The Pomeron contribution P(s, t) is approximate-
ly pure imaginary, dominates at small angles,
and contains dip structure. The large-angle con-
tribution C(s, t) is smoothly behaved (no dips) and
approximately real for pp scattering. The real
phase is established by use of dispersion rela-
tions' or derivative analyticity relations. ' lt can
be understood in the duality framework, since
the pp channel is exotic. Since P and C are ap-
proximately out of phase, no significant interfer-
ence occurs and doldt ~P'+ C'.

Most current Pomeron models have a single,
pure imaginary amplitude and can be roughly
classified into two categories.

(A) Models with an s-channel viewpoint. —Such
models are usually described by the amplitude
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