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and He+' at 3.5 MeV/amu. In any case, the mag-
nitude of the effect is unassailable since even the
undeconvoluted edge of the B"spectrum at 3.5
MeV/amu lies well to the high energy-loss side
of the undeconvoluted peak of the H' spectrum.

No theories of higher-order Z, effects have
been specifically compounded for the case of
channeled ions. Theories developed are for ran-
dom collisions and the analysis for valence elec-
trons has not yet been completed, but it is diffi-
cult to see how polarization and Bloch correc-
tions for valence electrons alone can be responsi-
ble for the observed effects. Increasing the ion
velocity will increase the contribution of inner
shells to the total stopping power. "'" To first
order this contribution is expected to scale as
Z, ', but polarization terms for large-impact-pa-
rameter collisions of channeled ions with 5P, 5s,
and 4f electrons could be large and may be re-
sponsible for the increasing Z, ' effect at high
velocities. The effects of dynamical screening, "
which have not been considered in detail thus far,
also appear to scale only with Z, '; however, since
the magnitude of this effect which tend to nullify
charge differences is larger at lower velocities,
deviations from Z,' scaling may tend to suppress
the Z, ' term for higher Z, at lower velocities.

The authors acknowledge V. E. Anderson for
his help in deconvoluting the data and R. H. Ritch-
ie for helpful discussions.
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Order-disorder transitions on square, triangular, and honeycomb arrays are classified
according to whether they can be continuous or must be first order by applying a criterion
of Landau. In particular, the transitions to 2 &2 arrays on triangular and honeybomb lat-
tices are predicted to be in the universality class of the four-state Potts model. A phys-
ical realization of this model, N& on Kr-plated graphite, is proposed.

In the literature of physical and chemical ad-
sorption, numerous observations of ordered ad-
sorbate structu."es are reported. Many of these
structures are identified as superlattices in reg-

istry with the array of adsorption sites provided
by the substrate. ' In only a few cases, however,
has the transition from the ordered to disordered
state been studied. ' ' With the recent advances
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phase. Transitions between ordered phases can
be treated in the same manner. The Hamiltonian
of the systems under consideration is that of a
lattice gas,

a- yN =zing;V(ri —r;)p(r))p(r, ) —iiQ;(r;),

(e)

(i)

FIG. 1. Nine of the superlattice structures considered.
The respective notations and transitions are (a) (~2

&& ~2IB45, Ising; (b) (1&& 1) [pl, Ising; (c) (~3&& ~3)A30,
three-state Potts; (d) 2&&2, first order; (e) (2&2) [4],
four-state Potts; (f) 2& 2, four-state Potts; (g) (~5
&& ~5)A26', first order; (h) {~7& ~7)A19'[$1, first or
der; (i) (~7& ~7)R19', first order. Two possible orien-
tations are shown in (g), (h), and (i).

in experimental techniques, the number of such
investigations has increased. Therefore, a sys-
teinatic study of the possible ordered states and
the nature of the transition to them seems to be
an important undertaking. This is strengthened
by the fact that some of the systems provide
physical realizations' of various theoretical
models of current interest.

In this Letter me propose a classification scheme
for commonly observed adsorbate structures. We
predict the transition to most of these to be first
order. The transitions that are predicted to be
continuous belong to the universality class of
either the Ising, three-state Potts, or four-state
Potts models. '

We consider those substrates, which present
adsorption sites forming either a square, trian-
gular, or honeycomb array. Our procedure is
readily applicable to other arrays. We also limit
consideration to the most commonly observed
kind of super lattices, those which possess the
same rotational symmetry as the substrate. Such
arrays are denoted' (a &&a)RO if the dimensions of
the unit cell of the superlattice is a factor "a"
times the substrate cell and is rotated by 0. Sev-
eral of the superlattices which we have investi-
gated are shown in Fig. 1. On the honeycomb ar-
ray, both honeycomb and triangular structures
can be formed so that we append the coverage to
the above notation in order to distinguish between
them. Superlettices other than those treated here
are easily handled. " Finally, we consider only
transitions from the disordered to the ordered

where p(r, ) takes the value 0 or 1 and is the oc-
cupation number of the adsorption site at r~. The
disordered state is characterized by (p(r~)) =Po
for all i, where po is the average density and the
brackets denote an ensemble average.

In order to classify the transitions to the super-
lattice structures, we employ the theory of Lan-
dau and Lifshitz. "'" According to this, a transi-
tion can be continuous if three phenpmenological
rules are satisfied: (l) The order parameter be-
longs to a single irreducible representation of the
symmetry group G, of the system (in the disor-
dered phase), (2) no third-order invariants can
be constructed from this irreducible representa-
tion, and (3) no invariants can be constructed
which contain first peters of spatial derivatives
(the Lifshitz Rule). The predictions of these
three rules have proved to be correct in three
dimensions. In bvo dimensions, however, it is
known that the second rules is violated" by the
three- and four-state Potts models. " Since there
are no known violations of the first rule, ave make
use of it as a simple yet powerful predictive tool
to classify whether transitions from disordered
states to the ordered structures of interest can
be continuous or whether they must be first order.

In order to apply this rule to the transitions of
interest, we must identify G, and define the order
parameter. To identify Go note that the symmetry
operations under which the disordered phase is
invariant define the space group I'4m' for the
square array and I'6mm for the triangular and
honeycomb arrays. An additional particle-hole
symmetry exists when p, = z (corresponding to-
time-reversal invariance in the well-known mag-
netic analog of the lattice gas). The order param-
eter is defined as (p(r&)) —po which vanishes in
the disordered state.

The transition to any superlattice structure
characterized by a density (p(r~)) can now be ex-
amined inlight of the first rule by simply deter-
mining whether (p(r, )) p, belongs —to a single ir-
reducible representation of 6,—if it does, it can
be continuous; if it does not, the transition must
be first order. Mukamel" and Mukamel and Krin-
sky"'" have pointed out that, in the former case,
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the order parameter will have n components,
where n is the dimensionality of the representa-
tion. Furthermore, the density can be written
in the form

(2)

where the n functions p, transform like the basis
of one irreducible representation of G,. Since
n +1 linearly independent functions can be con-
structed from p, and the n functions p;, the or-
dered state will be (n +1)-fold degenerate [for ex-
ample, the structure of Fig. 1 (f) is fourfold de-
generate].

our investigation is considerably simplified by
noting that the maximum dimensionality X of the
irreducible representation of Go is finite, being,
for the lattice-gas models, 8 and 12 for the sym-
metries P4mm and P6mm, respectively. It fol-
lows from Eq. (2) and the above discussion that
any superlattice configuration which can be reached
by a continuous transition from the disordered
state must be characterized by not more than X
+ 1 linearly independent function (p(r;)). Only a
few superlattices have sufficiently small degener-
acy to satisfy this criterion. Transitions to all
other superlattices must be first order These.
include (a xa)R8 ordered states where a & 3 for
square substrates, and a & ~13 for triangular sub-
strates. For honeycomb and triangular superlat-
tices on honeycomb arrays, the limits are &13

and ~V, respectively. Given an ordered state
which is (n+1)-fold degenerate with n & X, it is a
standard exercise in group theory to determine
whether (p(r&)) —p, belongs to one irreducible
representation. " We have done this for the super-
lattice structures noted above with the following
results.

The transition to the structures shown in Figs.
1(a) and 1(b) are characterized by n = 1 and de-
scribed by the Ising model. ' In order to deter-
mine whether the other transitions are describ-
able by known theoretical models, we have identi-
fied the corresponding Landau-Ginsburg-Wilson
Hamiltonian by constructing from the y; of Eq. (2)
the third- and fourth-order invariants. For the
case with n =2 shown in Fig. 1(c), the correspond-
ing Hamiltonian is that of the three-state Potts
model, "as first noted by Alexander. ' Recent
specific-heat measurements of Bretz' on He ad-
sorbed on single-crystal exfoliated graphite, a
system which exhibits this structure, yield &

=0.36 for this transition. This clearly indicates

that the transition does not belong to the univer-
sality class of the Ising model as had been pre-
viously assumed. '

The order parameter of the 2&&2 structure of

Fig. 1(d) belongs to two irreducible representa-
tions. Thus a first-order transition is predicted. "
In contrast, the 2 && 2 structures on the honeycomb
and triangular lattices Figs. 1(e) and 1(f) can be
continuous and the order parameter has three
components. Denoting the real basis of the irre-
ducible representation by {p»p„y,J, we find the
Landau-Ginsbur g-Wilson Hamiltonian

FI =2rg&y& +~+ (~y ) +my q'2q'3

+u(g;y )'+vQ;y, (3)

which is that of the four-state Potts model. "
That this model should arise in adsorption stud-
ies is probably one of our most striking results.
There is a single experimental finding which is
germane to this case, the low-energy election
diffraction (I EED) observation' of a continuous
transition to the 2&2 structure in the system
Ni(111)-O.

It would be extremely interesting if one could
prepare a physical realization which could be
studied both by heat-capacity and scattering tech-
niques. A likely candidate is obtained if we at-
tempt to prepare the four-state Potts system on
a honeycomb array of sites. Such an array can
be obtained by preplating graphite with a close-
packed layer of some atom of species'. If one
now adsorbs on this layer an atom of species 8
which is larger than A, then the second-nearest-
neighbor interaction will be repulsive as needed
for the (2 &&2) [4] structure to form. In order that
the system be thermodynamically stable, B must
be less strongly bound to the graphite than A. A

system which meets both these criteria is N, ad-
sorbed on Kr-plated graphite. This system has
several attractive features. The presence of the
ordered phase, if it does exist, can be verified
directly by either LEED or neutron scattering
measurements. The specific heat is expected to
be very strongly singular since the critical ex-
ponent n of the four-state Potts model is thought
to be' about 0.5. A beautiful comparison- and an
interesting experiment in its own right —would be
afforded by replacing the N, by He, because He on

Kr-plated graphite should order into the (1&&1) [2]
structure and display the logarithmic specific
hea. t of the Ising model.

As to the structures of Figs. 1(g)-1(i), the first
La.nda. u rule is sa,tisfied with n = 8, 12, and 12,
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respectively. However, in contrast to the pre-
ceding cases, the Lifshitz condition is not satis-
fied and thus one would expect first-order transi-
tions. A LEED study of systems that display
these structures would be interesting because ob-
servation of a continuous transition would prove
the Lifshitz rule violated. Finally, transitions
to all (a &&a)RG structures not shown in Fig. 1 are
predicted to be first order.

In summary, we have systematically surveyed
the transitions to common super1attices on square,
triangular, and honeycomb substrates. New re-
sults include the prediction of many first-order
transitions and continuous transitions in the class
of the four-state Potts model. These results
have yet to be tested experimentally.

We are extremely grateful to our friends J. G.
Dash and S. C. Fain for their enthusiastic support
of our work and for acting as our guides through
the vast literature on adsorption. We are indebt-
ed to David Mukamel for introducing us to Landau
theory and for helpful comments. Lastly, we
have profitted from discussions with R. Alben,
R. B. Griffiths, G. Golner, E. K. Riedel, O. E.
Vilches, and M. Wortis.
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The temperature-dependent susceptiblity of superfluid He-B has been measured both
statically and via a pulse technique in a field of 309 G using an rf-biased supereonducting
quantum-interference device (SQUID). In the pressure range 26.5 to 18 bar, the dynamic
NMR susceptiblity agrees qualitatively with the theoretical weak-coupling predictions for
the Balian-Werthamer state. However, the static susceptiblity, measured using the same
rf-biased SQUID and detection system, is significantly smalle& thatn the dynamic suscept-
ibility.

The difference between the susceptibility of
superfluid 'He-B as measured statically by su-
perconducting quantum-interference device

(SQUID) techniques and dynamically using NMR
techniques is one of the most puzzling experi-
mental discrepancies still existing in superfluid
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