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There is a connection between nonlinear partial differential equations that can be solved
by the inverse scattering transform and nonlinear ordinary differential equations without
movable critical points (e.g. , Painleve transcendents). We exploit this connection to re-
duce the second equation of Painleve to a linear integral equation. We also describe a
class of nonlinear ordinary differential equations that can be exactly linearized by this
method.

Fundamental work was done at the turn of the
century by Painleve and Gambier, who studied
ordinary differential equations of the form (A)

, = F(z, w, dw ldz),

where F is analytic in z, algebraic in w, and ra-
tional in dw/dz. (A thorough study of this work
is given by Ince. ') They identified all equations
of the form (A) for which the solutions have no
movable critical points [i.e., the locations of any
branch points or essential singularities do not de-
pend on the constants of integration of (A)]. This
classification includes all suitable linear equa-
tions, equations for elliptic functions, and six
equations which define new transcendental func-
tions, known as the six Painlevd tmnscendents.
The first three of these are

d'w/dz'= 6w'+ z;
d'w/dz = 2w'+zw+ o.;

w 1 dw ' 1 dw 1———+ —(nw'+ P)Gz w dz 8 Gz z

+yw + —.
w

These equations are said to be izxeduciwe, be-
cause they cannot be reduced to simpler (ordin-
ary differential) equations or combinations there-
of. This fact made the main result of this Letter
Jthat (2) reduces to a linear integral equation]
that much more surprising to us.

We demonstrate a close connection between
these nonlinear ordinary differential equations
without movable critical points and nonlinear par-
tial differential equations that can be linearized
exactly by an inverse scattering transform (IST).
The Boussinesq equation,

was linearized exactly with IST.' We observe
that (4) has a self-similar solution of the form
u(x, t) = w(x —t). Depending on the choice of con-
stants of integration, either w(z) is an elliptic
function or it satisfies (I). In either case, it has
no movable critical points.

The modified Korteweg-de Vries equation,

was linearized exactly with IST.' It has a simi-
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larity solution of the form &(x, i) = (3i) "'w(x
x(3f) ~~3);: w(z) satisfies (2), and has no movable

critical points. Similarly, the Korteweg-de Vries
equation,

Qt + 6QL4„+Q„„~= 0~ (6)

was linearized exactly with IST,' and can be trans-
formed into (5).' Consequently, its similarity
solution can be transformed into the solution of
(2).' Moreover, the Backlund transformation be-
tween (5) and (6) is a Hicatti equation, and there-
fore has no movable critical points. '

The sine-Gordon equation,

M st slQQ

was linearized exactly with IST.' It has a simi-
larity solution' of the form u(x, i) =f(xt). Under
the transformation, w=exp(if), w(z) satisfies (3)
for an appropriate choice of constants, and has
no movable critical points.

The connection between these special partial
differential equations and the equally special or-
dinary differential equations appears to be basic.
It provides information about both the ordinary
and the partial differential equations which is not
readily available by other means. The primary
purpose of this paper is to exploit this eonneetion

w (z)-rAi(z)- — -z '"exp(- -', z"'), z-+ ~;-i 4

w(z)-d[z~ "'sin(-', )z("' ——,'d'ln~z)+8),

where r, d, and 6t are constants. The connection
problem is to find d(r) and 8(x). By analyzing the
long-time behavior of the solution of (6), we
found' that for —1 &~&1

d'= —m
' ln(1 —~'). (10)

as a nonlinear generalization of an Airy function
[Ai(z) j. In this regard, it provides the archetype
of a "nonlinear turning point, " just as the Airy
equation does in linear problems. Consequently,
it is important to determine whether (8) has any
solutions that are bounded for all real z, and if
so, to "connect" the behavior as z- —~ to that as
z-+ ~. This global information can be found rath-
er directly, after embedding the problem within
the appropriate partial differential equation.

There is a one-parameter family of real solu-
tion of (8) that are bounded for all real z. The
asymptotic behavior of these solutions can be
found by a local analysis to be

(8)

to analyze the second Painleve transcendent, but For Irl~l, the solution of (8) is not bounded for
the methods are not restricted to this problem. all real z. 0 = 9(x) was not determined by the

We consider a special case of (2): method used by Ablowitz and Segur. '
The main result in this paper is that the con-

d zv/dz = 2''+zse.
nection between (5) and (8) not only provides prac-

In the limit, w-0, this equation reduces to the tical formulas, such as (10), but actually reduces
Airy equation and its solution may be thought of (8) to the following set of linear integral equa-

tions (for y &x, r real):

K, (x, y) —rAi -2 + — K~(x, s)Ai ds = 0, K, (x, y)+—
oo g+y
K, (x, z)Ai dz = 0,

where w(x) = K, (x, x). If desired, A', (x, y) can be eliminated from (11) to yield a single equation for K, (x,
y). These equations were obtained by seeking a purely self-similar solution to the linear integral equa-
tions that arise in the inverse scattering solution of (5). In the present context, we consider them as
equations in their own right. The first step is to establish the validity of (11), at least in a region of
space.

Claim. —Let Irl &1 and x ~-,'. Then there is a unique solution of (11) that is square-integrable on [x,
~). This solution is a continuous function of y.

moog. —(i) For z ~-'„

0 &Ai(z) & —,
' exp(- —', z).

Consequently, one can show that (in L, -norm on t x, ~)),

(12)

Uniqueness follows from using this result to show that the homogeneous version of (11) has only the
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trivial solution.
(ii) There is a formal Neumann series solution to (11). For R, (x, y),

,(x y) = -~Ai 2, v„„(

K, (x, y) = Q u„(x, y).
0

2 Ai 2

(13)

Using (12), one shows that [Ie„+,l[&r'[[v„[l, so that the series converges for 0 «x &1, and defines the
solution of (11). Moreover, the convergence is uniform for y~[x, ~).

(iii) Continuity of the solution follows from subtracting the solution of (11) at (x, y) from that at (x, y
+ 6), and utilizing the smooth, monotonic behavior of Ai(z). This completes the proof.

The same proof applies for any real x, if x is large enough. Based on the result in Ref. 9, we con-
jecture that if [el&1, (11) has a unique, continuous solution for any finite real x. Moreover, we ex-
pect that if j~) &1 a pole exists at some finite real x, and for x=1, the critical branch is obtained. In
any case, we now state the main result.

Theorem. The—re is an x, such that for x, «x «y, K, (x, y), defined by (11), satisfies

+ —K,(x, y) = K, (x, y)+ 2[%,(x, x)]'K, (x, y).(
B B x+y

By
(14)

In particular, E,(x, x) satisfies (8), so that this second Painleve transcendent is also the solution of a
well-behaved, linear integral equation.

Proof. (i) Def—ine the linear operator

—+—
By direct computation, using (13), the identity x+ y = (x+ z, ) —(z, + z,) + (z, + y), and repeated integration
by parts, one shows that

Lv, =0, Lv„„(x,y) = —
i [Lv„(x,z, )]Ai ' ' Ai '

dg, dg,

X+/ d . 8+X

8+x
v„(x, z)Ai dz = —2+v, (x, x)v„,.(x, x).

dx ~ 0

(ii) Using these results in an induction argument establishes, for n~ 0,
n n-j

Lg, (x, y) = 0, Lv „„(x,y) = 2 + Q v, (x, x)v„(x, x)v„, ,(x, y).
j=O A=O

(iii) Define

N

W„(x, y) = 5 v„(x, y).

Summing the results in (18) yields

~
a

~ ~
N t

~~
2 N t ~

n

~~

~
~

k

» ~

~
~ t ~ t n ~~

~ ~ k 7 ~

g + N 1 n n j—+ —W„(x, y) = W„(x, y) + 2 Q 5~ Qv„.(x, x)u, (x, x)v„, ,(x, y).Bx By

On the right-hand side, the limit (A-~) exists. Qn the left-hand side, termwise differentiation of the
series is justified by the uniform convergence of 8'„and its derivatives. This proves (14). Reduction
to (8) is accomplished by taking y = x, and this completes the proof.

These ideas can be extended to a more general class of nonlinear ordinary differential equations.
The simplest estension is to change the sign of 2w in (8). The procedure is unchanged, but changes
certain signs in (10) and in (11).



VOLUME 38& NUMBER 20 PHYSICAL REVIEW LETTERS 16 MAY 1977

(I)"(du) Idz) + d(zw) Idz = 0,

where

(22)

More generally, we define the kernels (for n
)1)

A„(x) = 2w
' f exp[ikx+ ik'""l(2n+1)]dk. (21)

For n = 1, A, (x) = Ai(x). Replacing Ai(x) in (11) by
A„(x) allows us to linearize
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M = —
2

—4 f—dy se (y ) + 4n) 2,
d dzo

dz2 dz z

and se-0 as z-~. These are the similarity equa-
tions [x(t/a) ' -x, a = (2n+ 1) '] associated with
the evolution equations of Ablowitz et al. ' with

~(k) kmn+l z q
10

Presumably, formulas such as (10) now can be
established directly from (11). From our view-
point, the most important consequence of these
results is that they establish a connection be-
tween nonlinear partial differential equations that
can be solved by IST and nonlinear ordinary dif-
ferential equations without movable critical points.
The precise nature and range of this connection
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The algebra of the weakly vanishing Hamiltonian generators of localized translations,
rotations, and supersymmetry transformations of supergravity theory is found. I argue
that supergravity is the square root of ordinary general relativity in the same way as the
Dirac equation is the square root of the Klein-Gordon equation and the Ramond-Neveu-
Schwarz model is the square root of the spinless string.

There is a close relationship between taking
the square root of the constraints of a Hamilto-
nian system, introducing spin degrees of free-
dom in a natural manner into a physical theory,
and the idea of supersymmetry. ' Here I call
supersymmetry the invariance of a theory under
a transformation which mixes Fermi variables
(obeying anticommutation rules) with Bose vari-
ables (obeying commutation rules). The simplest
example of this relationship is the Dirac elec-
tron, which regarded as a constrained Hamilto-
nian system possesses two constraints which
may be taken to be

eP" + g,m =0

x =p„p~ +m'= o, (lb)

(2c)

and the quantum theory is obtained by demanding
that physical states must be annihilated by g and
K. On account of (2a), I have Sip) =0~&ip) =0
and I say that the Dirac equation is the square

where 6& =i y,y&/M2 and 8, =y, /M2. These con-
straints are closed, in the sense

(2a)

(2b)
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