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Raman-scattering selection rules for surface polaritons have been studied by experi-
ments using a thin (= 20 p, m) single-crystal slab of QaP of known orientation. The dis-
persion of the observed mode has been determined by varying the scattering angle, and

comparison is made with the theoretically predicted dispersion of surface polaritons at
the surface of a semi-infinite GaP crystal. The observed selection rules are consistent
with the results of an analysis using the bulk Raman tensors.

Recently, surface polaritons (SP) have been ob-
served by Raman scattering from polycrystalline
films of GaAs. ' In these experiments, the au-
thors observed scattering from the upper and low-
er SP modes characteristic of a two-interface,
or slab, configuration where the thickness of the
slab is comparable to the penetration depth of the
surface mode. ' Thus far, however, no success-
ful observations have been made of Raman scat-
tering from SP with. a single crystal of known
orientation. Consequently, the polarization se-
lection rules for SP have not previously been de-
termined. We report in this Letter the fir st de-
termination of Raman-scattering selection rules
for surface polaritons.

We have performed near-forward Raman scat-
tering measurements on a thin (= 20 tom) slab of

single-crystal GaP with (111)faces with known
orientation in the plane. A peak in the Raman
spectrum has been observed, whose frequency
lies between the bulk TO and LO phonon frequen-
cies for GaP (367.3 and 403.0 cm ', respective-
ly). In order to identify this mode as being the
SP, we determined its dispersion by varying the
scattering angle, and compared it with the theo-
retical dispersion of SP at a single GaP-air in-
terface. ' We then determined a set of selection
rules for the scattering by varying the polariza-
tion of the incident light and the direction and po-
larization of the observed scattered light.

The GaP samples which we used in this study
were prepared by cutting oriented rectangular
para. llepipeds, ~2. 5&& 2.5x 1 mm', from a single-
erystal boule supplied by H. W. Verleur. These
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FIG. 2. Baman spectra taken with different scatter-
ing angles, 6. The dots are the experimental spectra,
and the solid curves are the calculated LO-phonon con-
tributions to the spectra. The arrow indicates the peak
position of the calculated surface-polariton contribution
to the data.

the relation

k
ii

= 2m (sing)/Z„

where X, is the incident light wavelength in vacu-
urn.

In order to determine the polarization selection
rules, we measured the scattering intensity for
the SP at 9 =2.5', for different combinations of
scattering direction and incident and scattered
polarizations. The intensities which we quote
were determined from the least-squares parame-
ters Asp as described earlier. We show in Fig.
1 two representative spectra obtained for differ-
ent scattering configurations: (a) for k„ ll z, E,
ll y, E~ ll y, in which the SP scattering is clearly
»»wed and (b) «»ii llz, E. lly, E& llz, in
which the SP scattering is evidently not allowed.
Numerical analysis of these two spectra reveals
that if a SP peak is present in (b), it must have
a scattering intensity of &, that of (a). Within
experimental aecuraey, we found the scattering
intensity to be equal whenever EpiEs fox a giv-
en k„direction, whether E, ll y or z. Likewise,
for E, ll E~ at a given ki, direction, we found equal
intensities with E, ll y or z. Our results are given
in Table I, in which the numerical values repre-
sent the (relative) scattering intensities for dif-
ferent polarization configurations. Because k,
and k~ were both parallel to x, only the configura-

FIG. 3. Experimental dispersion of the surface polar-
itons SP of a 20-p, m GaP slab (dots), and calculated
dispersion of the semi-infinite-crystal-air interface
(for & = 9.00). The error bars represent the combined
experimental and numerical fitting uncertainties. The
dashed line is the theoretical asymptotic SP frequency.
Note the expanded frequency scale.

TABLE I. Relative scattering intensities for surface
polaritons in GaP for different combinations of incident
and scattered light polarization and scattering direc-
tion. The numerical values are the experimental inten-
sities, accurate to within approximately 40%, and the
expressions enclosed by parentheses are the theoreti-
cal predictions. d is the constant element of the Raman
tensor (see Hef. 9).

A

kll ll Y

kll lii

E, ilz,

1 (-'d'lu, l')
3 (—'d'lu, ['+3d'lu „l')

I E

2 (3' d2lu, 12)

& 0.2 (none)

tions with E, and E~ parallel to y and z are given.
Having determined the selection rules by exper-

iment, we next examine the predictions of the the-
ory. We first recall' that SP are elliptically po-
larized in the sagittal plane; i.e., there are two
displacement components, 90' out of phase. These
components are ui (parallel to the surface nor-
mal) and uii (parallel to kii). In order to deter-
mine how these appear in the scattering, we as-
sume that the bulk Raman tensors control the
scattering, as is also assumed in theories which
make quantitative contact with previous data. '
We then calculate the scattering due to the u& and
ull in the standard manner. ' The results are also
gIven in Table I. Note that our results indicate
u ll )ui, the theory reviewed in Ref. 3 predicts
this to be the case for values of & intermediate
bebveen To and &&, the asymptotic SP frequency.

We note that the value of & used in calcula, ting
the dispersion in Fig. 3 is somewhat higher than
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other published values. " This causes the calcu-
lated dispersion curve to be higher than the ex-
perimental curve. We chose this value of &

however, because of the excellent fit it gives to
the experimental points of Marschall and Fischer,
which had very high experimental accuracy. '
Since the sample thickness is -10 times the pene-
tration depth of SP in the present experiment, one
expects no interaction bebveen the SP of opposite
faces. Thus there should be no separation into
"upper" and "lower" modes, as in Ref. 1. The
observed lowering of the frequency of the experi-
mental points could, however, be explained by
the effects of surface roughness. "

In conclusion, we have observed Raman scatter-
ing from surface polaritons at the surface of a
single-crystal GaP sample. The Raman-scatter-
ing selection rules for SP were determined, and
it was found that the Raman tensors for bulk
modes are applicable to the SP, as long as the
displacement components (ui and u ~~) of the SP
are properly taken into account. Further work
on the relative magnitudes of the SP displacement
components, as a function of 4i~, and results for
other surfaces of GaP will be presented in a long-
er paper, along with details of the experimental
procedures used in the work reported in this Let-
ter. 4
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