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Surface Critical Exponents in Terms of Bulk Exponents

A. J. Bray and M. A. Moore
Department of Theoretica2 Physics, The University, Manchester, M139PL, United Kingdom

(Received 28 January 1977)

'The surface exponents associated with critical phenomena in semi-infinite systems are
derived exactly in terms of bulk exponents. Results are y& &—- v —1, y~ ——v+(y —i)/2, pf
= (2-n)/2 —v, a& ——(1-n)/2, q~~= 1/v, and q~ = 1—(y —1)/2v, where v, y, o., etc. , are the
standard bulk exponents. 'The bulk-surface crossover exponent is y =1—v. For v& 1
no surface phase can exist.

The problem of critical phenomena in semi-in-
finite systems has attracted a great deal of atten-
tion in recent years. ' ' New critical exponents
associated with the surface have been defined by
various authors ' ' and scaling relations among
these exponents have been derived. ' ' These re-
lations suffice to determine all the surface expo-
nents if any one of them is known, but do not fix
these exponents absolutely. In this Letter we

point out that there is an additional scaling argu-
ment by means of which all the surface exponents
may be determined in terms of the bulk expo-
nents. Thus these a~e no new exjonents associ-
ated with the surface.

We take, as a model of the phase transition, a
Hamiltonian of the Ginzburg-Landau-Wilson type,
containing arbitrary quartic terms (e.g. , cubic or
other anisotropies may or may not be present).
For the sake of simplicity, the quadratic terms
in the Hamiltonian will be taken to be of the stan-
dard form [see Eq. (8)], although the arguments
given here or related ones are sufficient to cover
some cases of quadratic anisotropy. The effect
of the surface is modeled by the inclusion of an
extra "surface" term in the Hamiltonian:

n

II, = —,'c Jd'xb(z)Q y, '(X). (1)

Here y, (x) is the ith Cartesian component of the
n-component order parameter. The "surface"
perturbation, which destroys translational invari-
ance, is restricted to the plane z = 0 and the inte-
gration in Eq. (1) is over all space, not just the
half-space z)0. We assume that such a model be-
longs to the same universality class as a serni-
infinite system (except for v& 1, as will be seen
later). The parameter c is proportional to the re-
duction of the local mean-field transition temper-
ature in the surface plane. (For a spin model on
a lattice, this corresponds to a reduction of the
exchange interaction between spins in the surface
layer. ) The case c &0 corresponds to an enhance-
ment of the local mean-field transition ternpera-

ture in the surface, and for this case there exists
the possibility that the surface will order at a
higher temperature than the bulk. " We restrict
ourselves initially to systems for which such or-
dering does occur whenever c &0. Then the tran-
sition temperature T,(c) for the formation of a
surface phase is related to c by the crossover ex-
ponent' y, through the relation

T (c) —T,(0) oL
~

c~"~'. (2)

Our results are based on the observation that y,
may be deduced from the scaling properties of H„
regarded as a perturbation to the bulk Hamiltoni-
an, under a renormalization-group transforma-
tion 8, in which all lengths are scaled by a factor
b, i.e. , the transformation x-bx'. Since

g d -1- (1- n) / v —
y (1-v) / v

Cp (4)

where we have used the scaling relation 2 —+=du.
The eigenvalue' associated with c is therefore

), ,= (1 —v)/v

and the bulk-surface crossover exponent is'

It follows from Eq. (2) that for @,&0, i.e. , v&1,
no surface phase can exist. Indeed, the surface
Hamiltonian H, is an irrelevant operator for this

Z(n (x)
i=1

is simply the energy density e(x), its singular
part behaves in the bulk as E " )", where f is
the correlation length, and so scales as b

thus,

e( )xb' -'"e'(I'=x/b)

and

SH = b" ' (' ")"fd' bx(z')e'(x'=X/b)

Hence, under the transformation 8 the parameter
c is rescaled as
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case since c is reduced by each successive appli-
cation of (A. Thus, for v&1 and c'finite, the sys-
tem has bulk critical behavior, and therefore be-
longs to a different universality class from the
semi-infinite systems usually considered. '

For polymers (n=0), the result Eq. (6) has
been derived previously by de Gennes using heur-
istic arguments. " (de Gennes predicted y, =m,
implicitly using v=-', for polymers. ) Indeed, the
behavior of polymers at surfaces may provide
the most useful application for surface critical
phenomena theory.

To determine the critical exponents associated
with the surface itself, we consider the local sus-
ceptibility Xy y

which measures the response of a
spin in the surface to a magnetic field applied in
the surface. '

Xy y may be obtained from the two-
point correlation function G(p, z, z') = ( p,.(j, z)
x@(0,z')), where P is the separation of the two

points parallel to the surface. Introducing the
Fourier transform with respect to Io, G(k, z, z'),
we have y»=G(5, 0, 0). Now G(k, z, z') is deter-
mined from the Hamiltonian H according to

-(~ „ f Dq rp,.(R, z) y,(-k, z') e ~
Zp 8 /

Dye
7

where fDy means a functional integration over
all order -parameter configurations.

We take II to be of the form II= II, + II, + H„
where H, is given by Eq. (1),

H, = ,' Q f ~-y, '+ (V(p, )'J (8)
i=1

and II, contains terms of order cp,. and higher.
In Eq. (8), r ~(T —T,~)/T, ~ where T,~ is the
mean-field transition temperature. It is instruc-
tive to consider mean-field theory, "which con-
sists of neglecting H, . Then the total Hamiltonian
is quadratic in the variables y,. and one can solve
for G(R, z, z') to obtain"

exp[ —«{
~

*[+
~

i '
~
)]I,c+ 2v

~ -I IG~(k, z, z') = —(exp(-~lz-z'I) -exp(-~(lzl+lz'l)D+ —expl -~(lzl+lz'l)l+o(c ')
2K c

The mean-field expression for the local suscepti-
bility is T„where T, is the bulk transition temperature.

The scaling argument which leads to Eq. (4) im-= c+2vr
plies, however, that the first two terms in Eq.
(13) become comparable in magnitude when c is
of order I,

' ', whether or not a surface phase ex-
ists. Hence we make the identification

It too has an expansion in powers of 1/c.

(12)

C~(k, z, z') = —Iexp(- K
~

z —z'
~

)— (9)

where x = (r+ k')"'. In Refs. 3 and 5 the expression c/(c + 2w) in Eq. (9) is replaced by (c —tc)/(c +Ic), as
these authors employ a half-space rather than the complete space used bere. Note that G~(k, z, z')
may be written as an expansion in powers of 1/c.

The critical exponent y» is defined by the state-
ment that the most singular part of py y varies as
~ »,a as x-0. Thus, y, ,~= ——,'.

To go beyond mean-field theory, it is neces-
sary to include II, in the Hamiltonian. Treating
II, as a perturbation, we find that the basic ele-
ments of the perturbation expansion are the prop-
agators G~r(k, z, z'). In each order of perturba-
tion theory, G(k, z, z') may be replaced by the ex-
pansion of Eq, (10). This gives, on summing to
all orders in the perturbation H„a 1/c expansion
for the exact correlation function G(k, z, z'), and
thence a 1/c expansion for y, , of the form

'I 1 —Ac 't &&.&+ less singular terms),

(13)

where A is a constant. In Eq. (13), t~(T —T,)/

'Ys i= t' ~ ~

Equations (6) and (14) are the central results of
this paper.

All other surface exponents for c &0 may be de-
duced from y» by means of scaling laws. ' ' The
exponent g ~~

describes the decay of correlations
parallel to the surface according to G( j, z, z')
cr1/p" ""ii, as p-~ at fixed z, z'. It is related
to y» and v by the scaling law' y» = v(1 —q, ~),

giving

= 1/v. (15)

This agrees with exact results for the two-dimen-
sional Ising model, ' the n-vector model to order
e = 4 —d, 4 and the n = ~ limit of the n-vector model
for arbitrary d."
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yi = v+ —,'(y —1). (17)

The surface gap exponent 6z satisfies' Az pz
—v+ P which gives, using Eq. (17) and the bulk
scaling laws,

&, = 2(1 —o'). (18)

The surface magnetization exponent P, satis-
fiess 2pi+y& &

= 2 —o. —v giving

The exponent g, describes the decay of correla-
tions perpendicular to the surface, G(p, z, z')
~1/z" ""|.for z-~ fixed p, z'. It satisfies the
scaling relation Q ~i 2$+

pi= 1 —(y —1)/2v~

where we have used the bulk scaling law y = v(2
n)-
The susceptibility yz measures the response of

a spin in the surface to a uniform magnetic field. "
Its critical behavior is described by the exponent

y» satisfying' y, = v(2 —qJ, which gives

sition" defined by Lubensky and Rubin. ' The
mean-field exponent for the latter transition
(which corresponds to an enhanced surface ex-
change not quite strong enough to split off a sur-
face phase') is y»~ = —,', corresponding to a di-
verging susceptibility. %e suspect that the ser-
ies of Binder and Hohenberg are strongly influ-
enced by the existence of this other transition.

Finally, we note that the exponents for the
semi-infinite spherical models discussed in the
literature" differ from those predicted here.
These models are, however, somewhat artificial:
For bulk systems, the spherical model is equiva-
lent to the n = ~ model in the critical region, but
for semi-infinite systems the n= ~ model probab-
ly corresponds to a spherical model in which a
spherical constraint is applied separately to eve-
ry layer. " As mentioned above, the semi-infi-
nite n = ~ model has been solved exactly" and
does support the present predictions.

p, =-', (3 —a) —v= —,'+ v(d —2)/2,

via the scaling law 2 —e=dv. For the Heisenberg
model in three dimensions (v=0.7) we find P,
=0.85. Measurements of the surface magnetiza-
tion of NiQ using low-energy electron diffraction
(I EED) give" P,

—1, but it is not clear that the
data are sufficiently precise to distinguish be-
tween an exponent of unity and 0.85. Further ex-
pe»ments, using I,RED or the Mossbauer effect,
are clearly desirable.

The surface exponent values predicted here are
in precise agreement with exact results for the
d= 2 Ising model, ' the e expansion to O(e), and
the n = ~ limit of the n-vector model. " They dif-
fer significantly, however, from the exponent val-
ues estimated by Binder and Hohenberg on the ba-
sis of high-temperature series expansions for the
semi-infinite d = 3 Ising model. ' For example,
Binder and Hohenberg estimate y» to lie in the
range 0 (yz z

( —,', corresponding to a diverging
local susceptibility Xz z Our I esult yz I v 1=
—0.36 corresponds to a cusplike singularity in

A possible resolution of this discrepancy
lies in the observation that the asymptotic form
Eq. (13) is restricted to the regime t », i = t' '

In the opposite regime t ' »c, the critical
behavior is dominated, for an infinite system, by
the exponents of the bulk transition and, for a
semi-infinite system, by those of the "~ = ~ tran-
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