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Stokes- Einstein law. Keyes and Oppenheim'
have presented a hydrodynamic bilinear mode-
coupling derivation based on the Mori formalism
which also leads to a factor of —,'. A hydrodynam-
ic calculation using the Navier. -Stokes equation
with "stick" boundary condition ("slip" boundary
condition) for the fluid velocity at the surface of
the Brownian particle predicts z (~). It is in-
triguing that kinetic theory, which requires no

boundary condition, yields a factor intermediate
between these hydrodynamic extremes.

The generalized repeated-ring kinetic theory
yields the same asymptotic behavior as the ring
kinetic theory since the latter already includes
the most divergent contribution. However, D,
which requires the full time behavior of g„(t),
satisfies the Stokes-Einstein relation only for the
generalized repeated-ring theory. This suggests
that the theory used here should be investigated
as a theory of equilibrium time correlation func-
tions in dense fluids.

Finally, we emphasize that the kinetic equation
used here, while physically plausible, has not
been derived for a dense fluid. We are currently

investigating its derivation.
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Although the time-dependent Foldy-Wouthuysen (FW) transformation of the "Schrodin-
ger" equation iBg/Bt =- H( yields the transformed equation iB('/Bt =ti'g', where ttt'= U( and
H'= UA'U ' —iUB(U ')//Bt, the expectation values (g&, &~I) ) of A are not equal to (P,', h'g '),
but rather, to (g, UHU g,'). But one still has (g,g,.') = (P;,g.). I discuss implications
for perturbation calculations, scattering amplitudes, electrodynamics, and the external-
field 7tX ambiguity, and look at exact special cases.

In their classic paper, ' Foldy and Wouthuysen

(FW) showed that a, relativistic time-dependent
"Schrodinger" equation

More specifically, Foldy and Wouthuysen were
interested in starting with the external-field Dir-
ac electromagnetic Hamiltonian

t(B/Bt)/= HE, H=y, y (p —eA)+y, m+eV, (4)

( /tBt)Bg'=H'g', g'= Ug,

H'= UHU '- iUU '.
(2)

(3)

after undergoing a time-dependent unitary trans-
formation U, is given by the Schrodinger equation
(dot signifies B/Bt)

and then using successive transformations to di-
agonalize H order by order in I/m (in the sense
of decoupling the positive-energy components
from the negative-energy components). FW found
that by using Eq. (3) they could transform the Dir-
ac Hamiltonian to order I/m' into the genera, lized
Pauli time -dependent Hamiltonian'

(p —eA)' e — ie — e — e
Hp =yo n)+ +eV — yoo'B — 2o (V.~ E) — 2o' (E x j~)—

2pi 8n~
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(g, (,')=(g, , v 'vg, )=(0;, g, ), (7)

(as in, for example, a discussion of the scatter-
ing amplitude from "in" and "out" states), the
physical matrix elements of H and H' are not the
same. In particular,

(q, , Hq, .) =(q, , (v 'v)H(v 'v)q,).
= (g, (UHU ')(,') 0 ((,H'g, '). .(8)

Thus, although Foldy and Wouthuysen were cor-
rect in showing that it is H' which determines
the time development of the transformed wave
function, H'is not equivalent to H in the sense of
having the same matrix elements. Rather, UHU '
is. (In fact, any operator A would have its trans-
formed matrix elements preserved by consider-
ing UAU '.)

Note that my observation is strikingly verified
in the trivial special case where P= H„ the free
time-independent Hamiltonian, and V = exp(- i&et).
Then H' = UHU '+ +, so that (g', H'g') = (E, + w),
not E,. Further, it has been pointed out to me
that even in classical mechanics a time-depen-
dent canonical transformation can cause an ener-
gy shift. 2 At its roots this problem focuses on
the Hamiltonian formulation of mechanics with its
special treatment of the time variable.

One may wonder, then, why standard calcula-
tions using H' (such as perturbation theory with
the Pauli Hamiltonian) have yielded experimental-
ly correct numbers. I give here two methods to
see why, the first coming from a slightly involved
and specialized perturbation-theory argument. If
one can assume the Schrodinger statement that
the total time derivative of the quantity U V, de-
fined below is zero; [U 'Vo, Hj= —U 'Vo; then
one can arrive at

(O';, H%, ) = (4;O', H'O', 0'), 4',O' =—V04'„.,

where the 0 are any wave functions ((„or some-
thing else, and not necessarily g), and V, is a
time-independent unitary transformation. The dif-
ference between 4 ' and +0' can be mocked up by
—iUU . Paradoxically, this implies it can be
possible to get the same energy expectation val-

with

E= —v V —A, B=VxA.

It has often been tacitly assumed, therefore, that
the Pauli Hamiltonian is equivalent to the Dirac
Hamiltonian, to this order. However, as I now

observe, H' is not physically equivalent to H.
This holds since, although

ues from a perturbation theory because one is
not taking the exact expectation values of the
transformed Hamiltonian. [Equation (8) shows
that the exact expectation values would not be
equal to the originals. ] The second and more di-
rect answer to the implied question is that as a
matter of principle Eq. (7) shows that the exact
scattering matrix obtained from the transformed
wave functions is equal to the exact scattering
matrix obtained from the original wave functions,
even though in practice one cannot calculate such
quantities. What is different about this situation
from the time-independent case is that Eqs. (7)
and (8) are not either both equalities or both in-
equalities.

I summarize the above paragraph: If one deals
with time-dependent Hamiltonians and FW trans-
formations in an external-field problem, the ex-
act transformed wave functions P', whose time
evolution is described by the transformed Hamil-
tonian H', would yield the same scattering ampli-
tudes as in principle would be obtained from the
original wave functions g of Eq. (I). However,
H' &could not yield the same energy expectation
values as H. UHU ' would, as I now elucidate.

Even though g-number, single-particle, rela-
tivistic wave equations have well-known difficul-
ties when interactions are introduced, this all has
interesting consequences if one chooses to dis-
cuss such an external-field problem. When one
uses a particular external-field Hamiltonian in a
Schrodinger equation, one is saying that this Ham-
iltonian~nd this Hamiltonian alone (up to time-
dependent transformations) —gives both the time
development of the Schrodinger equation and the
object to consider for exact physical matrix ele-
ments. An external-field single -partic le Hamil-
tonian conceals the fact that physically it is the
total coupled-field Hamiltonian which need be in-
variant. The coupled Hamiltonian only implies
that the energy of the entire system is conserved
under a time-dependent transformation, not nec-
essarily a piece of it (the external-field problem).

This has escaped general notice for two rea-
sons, both related to the Pauli Hamiltonian. We
have seen that the Pauli Hamiltonian is equivalent
to the nonrelativistic Dirac Hamiltonian in the
static case (A=O, U '=0), like the hydrogen
atom. Since it also turned out that perturbation
calculations indicated equivalence, it has some-
times been assumed to be true exactly. The sec-
ond reason is that with the UO ' term, the Pauli
Hamiltonian is written in terms of the gauge-in-
variant electric field E = —~V —A. ' However, al-
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This problem was beautifully focused by Barn-
hill, ' who in a set of detailed calculations consid-
ered the three unitary, time-dependent FW trans-
formations U, „,

U„."=exp(*iS „), S~ =ZS, , + (1-X)S, „(12)
s, = (gq/2~@)y„s, = (- i/2.vs)q p,

s, = (i' /4IUP)goy„
(13)

where 0 &A. &1. Barnhill demonstrated that if one
successively applies these transformations to the
Hamiltonian (10) in the stardard manner' of Eq.
(3) for obtaining B', one finds to order M ' and

g that

p' igB = i%I'y'0 +
2 yo + yoy5y' p

+4~2~, A~ I3i+~r p)4)iI (14)

For A =1 the last two terms can be approximated'
to the Galilean-invariant interaction, but for A

11 this does not ensue. Thus, one seems to have
an energy ambiguity in the Hamiltonian. "

Part of the resolution should now be clear.
One should use LHU ' instead of H'. If one does
this, then the Barnhill transformations give only
the first three terms of R' and there is no A. am-
biguity. But where, then, is the Galilean invari-
ance'? That is hidden in the third term on the
right-hand side which reduces to (ig/21')o'p, q

though that is esthetically pleasing, it can be mis-
Leading. ~ For all theories it is necessary that the
physical matrix elements remain the same.

My observations also allow us to solve the pN
Galilean-invariant ambiguity. (One will also se..
that considering UHU ' in the end will yield the
correct static pion-field contribution to the nucle-
on mass. ) For many years now' "discussions
have existed on how or even whether the relativ-
istic mN Hamiltonian will lead to a nonrelativistic
Galilean-invariant interaction. In particular, it
has not been demonstrated that the exact, rela-
tivistic, c-nwnhey pseudoscalar mN Hamiltonian
(which Hamiltonian can be considered a model
for the nuclear force problem)

H = yoy 'p + yo M+igyyoy,

(y being the pion field) must yield the Galilean-
invariant nonrelativistic interaction

on the large components.
One must remember that this is an external-

field problem which has dropped the second coup-
led field equation ( +m,')p= —ig~, gy. There-
fore, just as the hydrogen atom ignores the mo-
menta of the proton with respect to the electron,
so too this problem ignores the relative momenta
of the pion with respect to the nucleon. It is a fun-

ny external-field problem since the nucleon is in
the external field of the pion which is allowed to
move. Thus, to go to center-of-mass coordi-
nates one makes, on physical grounds, the substi-
tution

(15)

Note that I am not necessarily identifying M with

rn, or m„. M is the unusual reduced mass of the
proton in the external field of the pion which is
allowed momenta. But that is not the point. The
point is that the c-number relativistic Hamiltoni-
an reduces to an unambiguous Galilean-invariant
interaction. However, for a complete understand-
ing in the pion absorption case, it is clear that
both coupled quantum field equations must be con-
sidered. That is, preferably one should perform
a time-dependent FW transformation first, and
then decouple the equations to the nonrelativistic
Limit.

To obtain a physical feeling for the correct-
ness of this resolution, one can obtain and study
the exact spectra of the Hamiltonian in the case
where the pion field is only a function of time, y
=4(i). First, since p, M, and C(t) all commute,
obtaining the spectra of H in Eq. (10) is simply
finding the eigenvalues of a matrix. One finds
that the spectra of JJ are

However, the spectra of H' from U, are not
+g(t), but ~ ( S +i) ~b, J"', where i) and b, are
complicated functions of A., p, 4, and 4 „On the
other hand, as one might expect for unitary trans-
formations, the spectra of U, HU, ', U, U+U, 'U, ',
and U, U, U. HU. 'U, 'U, ' are all ~$(t). This can
be shown exactly by using the mathematical meth-
ods described by Krajcjk and Nietp" for writ-
ing a, matrix functionalf (A) in closed form. In
particular, these methods allow one to give the
exact, closed forms of U, „."when cp=4 (i).
Thus, the unitarily transformed Hamiltonians
can be given in closed form so that the spectra
can be calculated. Specifically, the exact trans-
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formations are

U, "=(cosR )I~ (i/K, ,)(sinK, ,)S„,

K'~+ A ~2m ' '4J '2

U, "= cos, I sin, y,y, . (2o)

Finally, one can find the FW transformation
which exactly diagonalizes II of Eq. (10) when cp

=4(t). Again by the methods of Refs. 13 and 14,
with the aid of the standard free Lorentz trans-
formation given on p. 30 of the second work in
Ref. 1, this transformation is

U"=[2g(g+~)] "'j(h+~)l*p y*igey )

(21)

which yields

UBU ' = $ (t)y, . (22)

*Work supported by the U. S. Energy Research and

Note that in the completely static ease, where
the pion field is a constant, Eq. (22) is the exact
FW transformation which gives the energy eigen-
values. Hence this is another way to show that a
constant, static pion field adds a term to the nu-
cleon effective mass.
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