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Kinetic-Theory Derivation of the Stokes-Einstein Law+
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We employed repeated-ring kinetic theory incorporating the equilibrium correlations in
a dense Quid to study Brownian motion. It is demonstrated that the theory predicts the
Stokes-Einstein law relating the diffusion coefficient of a Brownian particle to its radius
and the fluid shear viscosity. In addition, the correct long-time behavior (t 3h) of the
velocity autocorrelation function is obtained,

The diffusion coefficient D of a large spherical
Brownian particle of radius RB = 2o~ immersed in
a fluid with coefficient of shear viscosity g and
temperature T obeys the Stokes-Einstein law'

D =hT/6mqRs,

where k is Boltzmann's constant. In the deriva-
tion of Eq. (1), the Brownian particle is assumed
to be sufficiently large that the host fluid (the
bath) can be treated as a continuous medium and
can thus be described by the linearized Navier-
Stokes equation of hydrodynamics. The solution
of this equation with the boundary condition that
the fluid sticks to the sphere's surface leads to
Eq. (1). However, recent investigations' demon-
strate that the Brownian particle need not have
macroscopic dimensions for the functional form
of Eq. (1) to hold.

The purpose of this Letter is to present a ki-
netic theory that leads to the Stokes-Einstein law
for a Brownian particle which is larger than the
bath particles but still of microscopic size. It
has been shown that a kinetic theory including
contributions from two successive correlated bi-
nary collisions (the "ring" terms) in addition to
uncorrelated (Enskog) collisions provides a good
description of the dynamics of the one-component,
hard-sphere fluid. "However, to describe the
motion of a Brownian particle of diameter 0~ and

mass m ~ in a fluid of bath particles with effec-
tive hard-core diameter ob and mass ynb when

OB) o„contributions from three or more suc-
cessive correlated binary collisions (i.e. , repeat-
ed "ring" terms') must also be included. Simple
arguments dictate that this be the case. At liq-
uid densities, the bath-particle mean free path
lb is such that lb&a„so that one can have lb«oB.
Consequently, a typical bath particle may experi-
ence a large number of correlated collisions with
the larger Brownian particle. We propose a re-
peated-ring kinetic theory which incorporates
successive correlated binary collisions and also
includes the exact equilibrium (static) correla-
tions in the fluid (essential at liquid densities).
This kinetic theory is shown to predict the Stokes-
Einstein form for the Brownian-particle diffusion
coefficient as well as the accepted long-time be-
havior of the Brownian-particle velocity auto-
correlation function.

Of central interest to the theory are the Brown-
ian-particle phase-space density f (1)=~NO(1
-q, ) and the bath-particle phase-space density

Here, 1 and 1 represent the field points (r„p,)
and (r-, , p-, ), respectively, q,. the phase-space co-
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C (12,t) =(6f (2)e' '6f (1)),

C«(12, t) =(6f«(2)e' '6f «(1))0, (2)

ordinates (r, , p, ) of the jth particle, and N the to-
tal number of particles. The time-dependent
Brownian-particle and bath density correlation
functions are defined, respectively, as

where I. is the Liouville operator of the system,
(. . .)0 represents the equilibrium average, and
6A =A -(A),. The Laplace transform of C'(12, t)
is C (12) = -i f,"dt exp(ist) C (12,t), with Ims )0.

Guided by the manner' in which the equilibrium
correlations in a dense fluid are systematically
incorporated into ring kinetic theories'4 we as-
sume that the Brownian-particle correlation func-
tion satisfies the analogously generalized repeat-
ed-ring kinetic equation of Ernst and Dorfman. '
Thus, our kinetic equation has the form

(4)

([s-L, (1)]C (12) —jd3[A'(l3)+R (13)]C (32) =C (12,t =0),

where L,~(1)=-ip,m~ ~ V„,, and A and R' are, respectively, the Enskog and "generalized repeated-
ring" memory functions:

A (13)yo (p, ) =n«jd4d4 y~ (p4)yo (p~)6(14)TE «(44)6(34),

R (13)y, (p, ) =n~ 'jd4d4d5d5d6d66(15)[TE '(55)]'

x ([s -L."(55)—T,"(55)]6(56)&( 6) -A'(56)5(56) -A'(56)5(56) )-'
x C (64, t =0)C (64, t =0)T««(44)6(34). (5)

In Eqs. (4) and (5) the Brownian- and bath-particle number densities are n, = 1/V and n, = (N —1)/V,
with V the volume of the system, and y, (p, ) is the Maxwellian momentum distribution function. T EB'

(44) is the Enskog collision operator. Henceforth we will assume that the bath particles are also hard
spheres so that TzB«(44) is the low-density hard-sphere collision operator multiplied by the species-
dependent radial distribution function evaluated at contact, g '(o '), where o '=2(oB+o,). Finally, the
bath-particle memory function A is the sum of the mean-field memory function (involving the direct
correlation function) and the bath-particle Enskog memory function (a simple generalization of A ).

The interpretation of this kinetic equation is as follows. A represents contributions from uncorre-
lated binary collisions. Expanding the repeated-ring term about TE '(55) we have

R'(13)P,'(P, ) =ns 'jd4d4d5d56(15)[T»(55)]&

x (GE (55;44) + jd6d6d7d7Gq~ ~«(55 66)[G «(66;77 t =0] '

x T, "(77)G, '«'«(77; 44) +. ]T,»(44) 6(34)

with

(6)

G " '(55' 44) = —ij dt e'"C (54 t)C '(54 t). (7)

CE' and CE' are the correlation functions calculated in the Enskog approximation, and t represents the
transpose operation. Clearly, R includes the contributions from two or more correlated collisions.
Consider the term in Eq. (6) with n TE ' operators. It describes processes in which first the Brown-
ian particle and another particle j undergo an "Enskog" collision (TE «). They then travel independent-

ly of one another (GE) interacting with the rest of the bath via Enskog collisions. After some time, the
Brownian particle again collides with pa, rticle j (TE ') or with some particle i which ha.s collided with
particle j since the Brownian-particle- j-particle collision. This process continues until there have
been n such correlated binary collisions.

The Brownian particle's diffusion coefficient is the s -i0+ limit of its velocity autocorrelation func-
tion („(s). For the generalized repeated-ring kinetic theory

q„'(s) = (kT/rn, )[s —A(s) -R(s)] '. (8)

Here we have assumed that A and R are "diagonal" on p~ such that R(s) is the following momentum
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matrix element of R:
R(s) =(mg/kTV) fdid3 p~R (13)(po (p3)p~.

A similar expression holds for A(s). For the hard s-phere model, A(s) is independent of s and given as
A(s) =-iX, where

& = ~ n, ( o")'g" (o")[2am, kT/m, (m „+m, )]"'. (1O)

A(s)+R(s) = iX+R—,(s)+R,(s)(-iX) 'R,(s)+. . . = —iX[1+R,(s)/iX] ',

where R,(s) is the ring contribution

R,(s) =i(n, /3m) f "dte'"f dqq'iB"(q)i'S, '(q, t)V,"(-q,t).
In Eq. (12), B '(q) is a momentum matrix ele-
ment of the collision operator TE '. In terms of sphere
the spherical Bessel function of Eq. (

(12)

Enskog approximation. In the second step
14) we have noted that vE»DE if vB)o, .

Substituting Eq. (14) into Eq. (12), we are able to
evaluate R,(s) analytically.

The analytic expression for R,(s) is substituted
in Eq. (11) and the resultant momentum matrix
element of the memory function is used in Eq.
(8) to determine („(s). We find that the velocity
autocorrelation function has the accepted long-
time asymptotic form'

8"(q) = i 3x/n, (m, /m, )"'j,(qo")/q v" . (13)

The calculation of R,(s) is also simplified by
the size of the Brownian particle. The factor
q'iB (q)i' in Eq. (12) effectively cuts off the q in-
tegration when qcr ~-4. Thus, for l~«cr~ the
significant contributions to the q integration come
from the range O~ql, «1. Consequently, the
product S, 'U~' can, for the long times, be re-
placed by its hydrodynamic form with frequency-
and wave-vector-independent transport coeffi-
cients. Also, at short times, the restriction 0
~ ql, «1 implies 8, 'Uj'-1 over the q integration.
This condition is satisfied by the hydrodynamic
form of 8, 'U~'. To summarize, the large size
of the Brownian particle introduces a. wave-vec-
tor cutoff in R,(s) such that only the long-time,
small-wave-vector (hydrodynamic) forms of the
intermediate propagations S, and V~" are re-
quired. Therefore, we make the approximation

lim y„'(t)™—',(kT/m, n, )(4mv, t) "',
f~oo

and that the diffusion coefficient is given as

(16)D =i(„(s=iO+) =DE +kT/5zqER B.

In Eq. (16) the Enskog shear viscosity is qE
=m~n~vE and Rz = ~OB. If OB &0„ it is readily
demonstrated that the second term in Eq. (16)
dominates the Enskog diffusion coefficient DE.
Thus, our generalized repeated-ring kinetic the-
ory predicts the correct functional form of the
Stokes-Einstein law, D ~ kT/E'ER B.

It should be noted that in the long-time form of
P„(t), Eq. (15), and in the Stokes-Einstein rela-
tion, Eq. (16), it is the Enskog value of the bath
shear viscosity which appears in our theory,
rather than its full hydrodynamic value.

Our kinetic theory predicts a factor —,
' in the

S,'(q, t)& '(-q, t)= exp[-q'(D, +v, )t]
= exp(- q'v, t ),

where DF =kT/m, X and v~ are, respectively, the
Brownian-particle diffusion coefficient and the
bath-particle kinematic viscosity in the hard-

We have carried out an analysis for the generalized repeated-ring term R(s) analogous to procedures
recently" used for the ring term [the first term in the expansion of Eq. (6) for RB]. One proceeds
term by term in (6) as follows. First one introduces the spatial Fourier representations of the corre-
lation functions in Eq. (6); this introduces intermediate wave vectors, q, q, . . . . The laboratory z com-
ponents of p, and p, in Eq. (9) are then expressed in the appropriate wave-vector reference frame. One

then uses kinetic modeling procedures to express C~ (q, p„p„t) and CE'(- q, p;, p;;t) in terms of corre-
lation functions of conserved variables (those which persist for long times).

For a laxge, but still microscopic, Brownian particle, the analysis of the generalized repeated-ring
kinetic equation is much easier than for a one-component system. We find that if OB & 0„ the coupling
of the Brownian-particle momentum to the conserved variable modes via CE is dominated by the trans-
verse current correlation function Vi'(- q, t). The analogous coupling CE is through the self-part of
the dynamic structure factor S, (q, t). This simplifies the memory function such that, for isi «Z,
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Stokes- Einstein law. Keyes and Oppenheim'
have presented a hydrodynamic bilinear mode-
coupling derivation based on the Mori formalism
which also leads to a factor of —,'. A hydrodynam-
ic calculation using the Navier. -Stokes equation
with "stick" boundary condition ("slip" boundary
condition) for the fluid velocity at the surface of
the Brownian particle predicts z (~). It is in-
triguing that kinetic theory, which requires no

boundary condition, yields a factor intermediate
between these hydrodynamic extremes.

The generalized repeated-ring kinetic theory
yields the same asymptotic behavior as the ring
kinetic theory since the latter already includes
the most divergent contribution. However, D,
which requires the full time behavior of g„(t),
satisfies the Stokes-Einstein relation only for the
generalized repeated-ring theory. This suggests
that the theory used here should be investigated
as a theory of equilibrium time correlation func-
tions in dense fluids.

Finally, we emphasize that the kinetic equation
used here, while physically plausible, has not
been derived for a dense fluid. We are currently

investigating its derivation.
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Although the time-dependent Foldy-Wouthuysen (FW) transformation of the "Schrodin-
ger" equation iBg/Bt =- H( yields the transformed equation iB('/Bt =ti'g', where ttt'= U( and
H'= UA'U ' —iUB(U ')//Bt, the expectation values (g&, &~I) ) of A are not equal to (P,', h'g '),
but rather, to (g, UHU g,'). But one still has (g,g,.') = (P;,g.). I discuss implications
for perturbation calculations, scattering amplitudes, electrodynamics, and the external-
field 7tX ambiguity, and look at exact special cases.

In their classic paper, ' Foldy and Wouthuysen

(FW) showed that a, relativistic time-dependent
"Schrodinger" equation

More specifically, Foldy and Wouthuysen were
interested in starting with the external-field Dir-
ac electromagnetic Hamiltonian

t(B/Bt)/= HE, H=y, y (p —eA)+y, m+eV, (4)

( /tBt)Bg'=H'g', g'= Ug,

H'= UHU '- iUU '.
(2)

(3)

after undergoing a time-dependent unitary trans-
formation U, is given by the Schrodinger equation
(dot signifies B/Bt)

and then using successive transformations to di-
agonalize H order by order in I/m (in the sense
of decoupling the positive-energy components
from the negative-energy components). FW found
that by using Eq. (3) they could transform the Dir-
ac Hamiltonian to order I/m' into the genera, lized
Pauli time -dependent Hamiltonian'

(p —eA)' e — ie — e — e
Hp =yo n)+ +eV — yoo'B — 2o (V.~ E) — 2o' (E x j~)—

2pi 8n~


