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perimental data deviate strongly from this trend
in the 100-200-MeV region. Above 250 MeV the
measured cross sections are seen to exceed the
single-step predictions by several orders of mag-
nitude. This discrepancy is far beyond the range
of theoretical uncertainty in the single-step cross
section ensuing from reasonable variations in the
potential well parameters. It provides strong
evidence for the involvement of more than one nu-
cleon in the photon absorption mechanism and,
hence, the possibility of discovering the details
of the interaction processes which provide the
necessary additional high-momentum components.

Two such processes have already been investi-
gated theoretically in a qualitative way and are
shown to be capable of enhancing the (y,P) cross
section above 100 MeV, viz. short-range corre-
lations' due to the repulsive core of the internu-
cleon force and a two-step mechanism' in which
the h(1232) nucleon isobar is excited in an inter-
mediate state [see Fig. 2(b)]. The preliminary
results of this latter calculation are shown ln
Fig. 1. It is evident that the 6 excitation mech-
anism can make a major contribution in the 100-
300-MeV photon energy region.

Experimental data of reasonable accuracy and
extent are now available over the kinematic range

in which one might hope to observe short-range
effects in the (y,P) reaction. Because of the ap-
parent importance of virtual ~ excitation, how-

ever, a more careful theoretical treatment of
this and other processes"' is necessary before
additional constraints on the internucleon force
at small distances may be obtained.
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A microscopic model is presented which provides a practical means for selecting the
states necessary for the development of nuclear collective rotational and quadrupole vi-
brational motions in a shell-model calculation. The model is based on the noncompact
Sp(S, Q) algebraaud is s.. natural generalization of Elliott's SU(3) model to include many
major shells.

In spite of the enormous successes of the nu-
clear rotational model, a microscopic theory of
rotational states has proved extraordinarily elu-
sive. One of the problems is to learn how to
recognize rotational states. In a recent paper'
we proposed a criterion for designating a state
rotational based on the concept of a mell defined-
intrinsic shape, measurable with shape observ
ables.

The essential idea follows a suggestion of Ba-

ranger. ' One observes that each set of nucleon
coordinates defines a traceless quadrupole mass
tensor Q and hence a set of principal axes and

principal values. Thus the nuclear density ~g(r„
.. . , rA)~' defines a probability distribution P(X„
X„A,) for the principal values of the quadrupole
mass tensor. The criterion for a state to be ro-
tational is then that the width of the distribution
in A., should be small compared to its mean value
It was shown that X„can be expressed as a fune-
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(a,') —(a,)'«(a,),
(a')-(a )'& (a )'. (3)

It is shown that this criterion is indeed satisfied
by the adiabatic rotational model.

The objective of this Letter is to show that this
criterion also provides the means to generate
microscopic rotational wave functions in a shell-
model basis. All we have to do is find simultan-
eous eigenstates of the commuting operators 0„
a, and the angular momentum operators L' and

L,.
Now a, and 0, are the Casimir invariants of the

algebra [R'] 80(3), whose generators are L and

Q. Thus the irreducible representations of
[R']SO(3) are pure rotational states according
to the definition (3). In fact the irreducible rep-
resentations of [R']SO(3) have been determined
by Ui' and Weaver, Biedenharn, and Cusson' and
shown to reproduce the rotational-model predic-
tions for E2 transitions. Unfortunately, the prob-
lem of realizing irreducible representations of
[R'] SO(3) on shell-model state space is nontriv-
ial due to the fact that exact eigenstates of a, and

a, are non-normalizable (i.e., they are 5 func-
tions in X) and cannot be expanded in a finite
shell-model basis. However, the criterion (2)
does not demand exact eigenstates and indeed,
on physical grounds, we expect some vibrational
shape fluctuations. It is reasonable therefore,
to seek eigenstates of a„a„L', and L, in a
truncated shell-model space of say v harmonic-
oscillator shells. Furthermore, the admixtures
of high-lying shell-model configurations in low-
lying physical states should be small if the shell-
model makes any kind of sense.

The rather drastic truncation of keeping only
states from a single (Oh&u) harmonic oscillator
(HO) shell results in states that belong to a sin-
gle irreducible representation of SU(3). This is
clear since, when truncated to a single shell, the
operators a„a„L', and L, are in the enveloping
algebra of SU(3). However, these states differ

tion A.,(a„a,) of two scalar operators

~. =-- —,'»(Q') =-,(Qx Q)',

a, —= —det(Q) =,—,', (-', )'~'(Q x Q x Q)',

where cross products signify angular momentum
coupling and carets denote operators. Since an
eigenstate of ~] ~2 ~, is necessarily also an ei-
genstate of a, and a, the criterion for a state to
have a well-defined intrinsic shape can be ex-
pressed by the inequalities

somewhat, in general, from Elliott's' SU(3) ba-
sis states. They are in fact identical to the SU(3)
basis states of Bargmann and Moshinsky' and
Judd et al. ,' which, according to our criterion,
are the closest possible approximations to r'ota-
tional states that exist within a single shell.

If we attempt to enlarge the space to include
the (Oh+, 25&v, . . . , 2yh~) HO shells, the shell-
model dimensions rapidly become astronomical
and the only hope for progress is to find another
algebraic structure [like SU(3) for y =0] to limit
the dimensions.

Considerations of nuclear quadrupole dynamics
suggest that [R']SL(3,R), or CM(3) as it has been
named, "may be a suitable algebra. The gener-
ators of CM(3) are L, Q, and S, where Q may
here have nonzero trace and

s=-(i ja)[Q,e].
is the shear momentum tensor, whose compo-
nents are the generators of linear incompressi-
ble deformations. Thus CM(3) involves the vibra-
tional degrees of freedom in addition to the ro-
tational degrees of freedom of its subalgebra
[ R'] SO(3). Actually, CM(3) is but an algebraic
statement of the Bohr model generalized to allow
large-amplitude vibrations. Furthermore, it
has been shown" that, with some reasonable as-
sumptions about the two-nucleon interaction, a
canonical transformation to collective and intrin-
sic coordinates can be made such that the Hamil-
tonian separates cleanly into collective and intrin-
sic parts with H„» a rational function of the gen-
erators of CM(3).

The irreducible representations of CM(3) have
been determined. e But again it appears that the
decomposition of shell-model states into irre-
ducible CM(3) subspaces is too difficult to carry
out at this time.

The appropriate generalization is the symplec-
tic Lie algebra Sp(3, R) which is the smallest al-
gebra containing both [R'] 80(3) and SU(3). For-
tunately, Sp(3, R) also includes CM(3) as a sub-
algebra so that the Bohr model is also realized,

Sp(3, R) & CM(3) & [R'] 80(3),

Sp(3, R) & SU(3) .

This subalgebra structure is vital to both the
physical significance of the symplectic model and
its ultimate practicality. On the one hand, the
important collective degrees of freedom treated
phenomenologically by the Bohr and collective
rotational models are incorporated in Sp(3, R)
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where b,.~ is the Ho raising operator for nucleon
i. The generators of Sp(3, R) include, in addition
to those of SU(3), the operators
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FIG. 1. SU(3) irreducible representations (A, ,p) span-
ning the Sp(3, R) irreducible representation whose OS+
subspace transforms as (0, 0).

through the CM(3) and [R']SO(3) subalgebras. On
the other hand, the Elliott SU(3) subalgebra takes
care of the shell-model aspect of the collective
wave function and is directly responsible for the
computational tractability of Sp(3, R).

It must of course be recognized that Sp(3, R),
like SU(3), is a spectrum-generating algebra
rather than a symmetry algebra. Thus its use-
fulness lies in the fact that many Hamiltonians of
interest, in particular collective Hamiltonians
and the harmonic-oscillator shell-model Hamil-
tonian [cf. E«I. (7)], lie in its enveloping algebra.

Mathematically, Sp(3, R) is the noncompact sim-
ple real Lie algebra of dimension 21 [sometimes
denoted Sp(6, R)] whose complexification is C, in
the Cartan classification. It is isomorphic to the
algebra of all one-body bilinear products in the
position and momentum observables. The repre-
sentations of Sp(3, R) have been determined. "
But, what is more important, they are realizable
in shell-model state space.

Recall that, in the shell-model realization of
SU(3), ' the generators can be expressed

Now it has been shown" that, if we start with a
set of Oh'e SU(3) states

~
(A p. ) && LM) and generate

the set of 2I«&d states A„B~(kp, )XLM), the 4h&u

states A &A, ~(A.p, )xLM), etc., the set of all
states so generated carries an irreducible rep-
resentation of Sp(3, R). This building up process
corresponds to starting from the basis states of
a single OA~ SU(3) representation and augment-
ing the space by successive application of Q and
the monopole operator Q;r Fig.ures 1 and 2

illustrate the results obtained starting from the
(0, 0) and (8, 0) SU(3) states, respectively.

It is interesting to note some similarities with
the phenomenological model of Arima and Iachel-
lo,"based on the algebra SU(6), which has the
same spectrum of states as the Sp(3, R) model
generated from the (0, 0) SU(3) representation.
The identification results from the fact that the
first excited level (2, 0) in the Sp(3, R) represen-
tation is six dimensional and thus carries the
fundamental representation of SU(6). However,
the algebraic structures of the two models differ
since Arima and Iachello take their excitation
operators to be boson operators whereas the A

&

in the Sp(3, R) model are bilinear products of bo-
son operators and do not satisfy the oscillator
commutation relations. Nevertheless, the re-
markable successes of the SU(6) model"'" bode
well for the microscopic Sp(3, R) model.

The value of the Sp(3, R) scheme is its simplici-
ty. The states are very easy to calculate in

(14,0) ~ (12 ~1) ~ (10~2) p (9~1)
(8 3) 7 (8pp) (7&2) 0 (614)
(6, 1), (5, 3), (4, 5), (4, 2), (2, 63

(12,0), (1 0, 1), (6, 3), (4, 4),
(8,2), (7, 1), (6, 0)

p9 18 223 319 429 522 628
719 821 912 1pll 115 124

13, 14

ps 13 211 37 413 58 612 77

8 , 9",104, 11,12

(10,o), (8 1) ~ (6 2) 0 , 1, 2 3 4 5 , 6" 7 , 8
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E0
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FIG. 2. SU(3) irreducible representations (A, , p) spanning the Sp(3,R) irreducible representation whose OS sub-
space transforms as (8,0).
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terms of the shell model, since the A„B are sim-
ple particle-hole operators. Moreover, since
A s is an irreducible (2, 0) SU(3) tensor operator,
its matrix elements are partially determined by
the Wigner-Eckart theorem. Furthermore, one
can truncate the basis at many levels since the
number of states of a given angular momentum
does not proliferate very rapidly with the number
of shells, cf. Figs. 1 and 2. The total dimension
of the 2rh&u level is just ("„")times the dimension
of the Ok~ level. The algebra also permits the
straight-forward calculation of many observables
of interest in the enveloping algebra of Sp(3,R),
e.g. , the shape operators a„~, and E2 transi-
tions.

A rotational band spans an eigenspace of the in-
variants a, and a, of [R'] SO(3). Thus, the calcu-
lation of rotational bands in the shell-model basis
has the group theoretic meaning of determining
the transformation from the SU(3) basis to the
[R'] SO(3) basis. In a truncated space, exact ei-
genstates of a, and a, do not exist. Nevertheless,
a, can be diagonalized in a truncated SU(3) basis
and one can determine whether or not the result-
ing band approximately satisfies the rotational-
model [R']SO(3) prediction for Z2 transitions.
Table I indicates the extent to which rotational
bands can be constructed with only a few shells.
(Note that, although the Sp(3, R) model space con-
tains a certain small admixture of center-of-
mass excited states, the operators a, and a, com-
mute with the c.m. operators. The states repre-
sented in Table I are consequently entirely non-
spurious. )

In reality we believe that physical states, es-
pecially in light nuclei, will not be pure rotation-
al. In particular, we anticipate that shell effects
will cause a more rapid fall off of the contribu-
tions from higher shells than pure rotational
states would require. It is of interest therefore,
to consider the spectrum that would emerge from
diagonalization of the Hamiltonian H =H„Q+ V(p,
y)' eg

H=HHQ+ 2 &(P' —L3Q')'=H„Q —x,a, +x,a, 'y

where IIHo is the independent-particle Ho Hamil-
tonian. The spectrum for this Hamiltonian is
easy to calculate since H is in enveloping algebra
of Sp(S, R). The Sp(S, R) model can, of course,
also be used simply as a means of generating ba-
sis states for the diagonalization of any Hamil-
tonian. The vital contribution of the Sp(3, R) mod-
el is then to provide a simple means of augment-
ing the OLu shell-model space to include the

TABLE I. The ratios a, (L)/a~(0) for the eigenvalues
of a2, a3(L)/a3(0) for the expectation values of a3, and
J3(E2; L —L —2)/B(E2; 2—0) for reduced E2 transition
probabilities are given for the Sp(3,R) irreducible rep-
resentation whose OS~ subspace transforms as (8, 0)
under SU(3) for mass number 4 =20. The results are
given for the most deformed band in each of the sub-
spaces, which include states up to 0~, %, and &&,
respectively. The corresponding predictions of the ro-
tational model (B.M.) are given for comparison.

Oh(0

a (L) /a (0)
3 3

B(E2;L-+L-2)
B(E2;2~0)

1.0

1.0

0.97

0.95

0.93

0.83

1.27

0. 85

0.65

1.07

0. 75

0. 39

0. 64

2hal a (L) /a (0)
2 2

a (L) /a3 (0)

B(E2;L~L-2)
B(E2;2~0)

1.0

1.0

0.98

0.96

0.94

0.88

1.34

0.87

0. 75

1.29

0. 78

0. 57

1 ' 07

4$(0 a (L) /a (0)

B(E2;L~L-2)
B (E2; 2~0)

1.0 0.99 0. 95

1.37

0. 90 0. 82

1.28

R. M. a (L) /a (0)

s3 (L)/a3 (0)

B(E2;L~L-2)
B(E2;2~0)

1.0

1.0

1.0
1.0

1.0

1.0

1.43

1.0

1.0

1.57

1.0

1.0

1.65
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states necessary for the development of collec-
tive vibrational and rotational motions. In this
context it is important to stress that the algebra
CM(3)& Sp(3, R) contains the generators of vibra-
tional motions and of both irrotational and rigid-
flow rotations and of all possible linear combina-
tions. " Clearly many possibilities exist and it
will be interesting to see what types of motion
emerge from detailed microscopic calculations.
Some of the possibilities will be investigated in
a more complete presentation of the model to fol-
low.
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Scattering of Low-Energy Electrons by Excited Sodium Atoms Using a Photon
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A new method for measuring cross sections for the scattering of electrons by laser-
excited atoms is described. It is a generalization of the atomic-beam recoil technique,
taking advantage of the recoil of atoms during resonant photon interactions to spatially
separate excited from nonexcited atoms. A preliminary value for the total cross section
for the scattering of electrons by the 8 Psy2(mz ——8) state of sodium at 4.4 eV is presented.

We report here on preliminary measurements forward direction with and without the electron
of the absolute total cross sections for the scat- beam operating, one can obtain absolute, total
tering of low-energy electrons by sodium in the cross sections.
O'I',&,(m~ = 3) state at 4.4 eV, using a novel laser Scattering from excited sodium atoms, pre
excitation method. The method is a generaliza- pared by cross-firing a sodium beam with a cw

tion of the atomic-beam recoil technique. ' ' Ad- single-mode dye laser tuned to a nonoptically
vantage is taken of resonant photon recoil which pumped hyperfine resonance line, has been the

spatially disperses the sodium atoms in propor- subject of a number of recent, innovative papers
tion to the fractional time they spend in the ex- by Hertel and co-workers. ' ' They have report-
cited state while undergoing collisions. In the ex- ed on differential superelastic and inelastic scat-
periment reported here, the atomic-beam recoil tering and also have presented theoretical analy-
technique is used to determine absolute total ses of some of the physics of excited-state scat-
cross sections. More generally, the double re- tering. A discussion of the use of the recoil tech-
coil technique described in this Letter appears nique to obtain scattering amplitudes for the su-
to offer a new method for studying many types of perelastic 3'P,(2 3 SU2 transition in sodium, in-
excited-state scattering cross sections. eluding discussion of coherent effects in the scat-

Detailed discussions of the recoil technique tering process, is presented by Bederson and

when dealing with ground-state atoms are pre- Miller. '
sented in Refs. 1-3. Briefly, a narrow atomic A schematic diagram of the experimental set-
beam is cross-fired by a beam of low-energy up is shown in Fig. 1. The atomic beam is cross-
electrons. The atomic beam is velocity and spin- fired by mutually orthogonal electron and laser
state selected before scattering, and can be spin beams. ' The atoms are optically excited in a
analyzed after scattering. The spatial dispersion region of uniform magnetic field (-700 G) orient-
of the scattered atomic beam is measured by an ed along the electron beam axis. This field serves
analyzer-detector assembly which rotates about to partially decouple the nuclear and atomic mag-
the scattering region. With use of suitable kine- netic moments. A cylindrical lens is used to
matic analysis, one can thereby obtain differen- elongate the laser beam along the atomic beam
tial elastic and inelastic cross sections, includ- axis.
ing spin-exchange and spin-flip cross sections. The atomic beam is polarized and velocity se-
In the scattering-out mode, that is, by measur- lected by an offset Stern-Gerlach magnet, and

ing the ratio of atomic-beam intensities in the can be spin-state analyzed by an E-II gradient


