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of the detailed Coulomb trajectories are required.
Hence, the validity of scaling the D'-D collision'
depends strongly upon Z/M„= 1.00 for velocities
near the threshold. Collision systems where
Z~M, = 0.91 (i.e. , "Ne'-"Ne) can lead to varia-
tions of K vacancy yields as high as 40%%up. At high-
er relative velocities, however, the relative ve-
locity scaling does appear to be valid for colli-
sion systems with Z/M„= 1 as predicted. 2

Since we completed these experiments, Taul-
bjerg and Macek' have kindly provided explicit
calculation of the isotope effects we observed for
the collision system used in our experiment,
based on a mass-dependent refinement of their
original papers' to be published in the very near
future. "' The solid curves in Fig. 1 display the
results of their mass-dependent treatment, ex-
cellently accounting for the large isotope effects
seen in our experiments. The new mass-depen-
dent treatment of vacancy production in assym-
metric collisions by Taulbjerg, Briggs, and Vaab-
en has thereby been shown to be excellent. The
demonstrated size of such isotope effects even in
total crosssection measurements provides a
promising experimental tool for use in studying
other collision systems.
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Angular Distributions of Electrons from Resonant Two-Photon Ionization of Sodium
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Sodium atoms are excited to either the 3 P&y~ or 3 P3y& state using a linearly polarized
dye-laser beam and are subsequently ionized using a linearly polarized nitrogen-laser
beam. Angular distributions of the ejected electron have been both measured and calcu-
lated for several relative orientations of the photon polarization vectors. The difference
between the s- and d-continuum partial-wave phase shifts 6, —6d and the ratio of the ra-
dial dipole matrix elements (d~/d~) are obtained.

We report the first measurement of anisotropic angular distributions of electrons from resonant two-
photon ionization of atoms. An isotropic ensemble of sodium atoms in their O S,/, ground state is ex-
cited to either the O'Pz/2 or the O'P, /, level by a linearly polarized beam from a tunable dye laser, pro-
ducing an aligned intermediate state. After a 5-nsec delay, they are ionized by a linearly polarized
nitrogen laser beam of wavelength 337.1 nm. For the two-step ionization process, the intensity of elec-
trons ejected in direction 0 is given by

=const Q Yz„(Q)(p~ ~'lp~ ~'~)~„C(A„A„L),
A~A2
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1 1 ~ 'I 'I, (2A, +1)(2A2+1)(2l+ 1)(2l'+1) ~'~'

&& d, d, .cos(5g —5, .)[max(f, 1)max(/', 1)]"'(-1)~'"""(-1)~"
the d, 's are the radial dipole matrix elements from the interIDediRte 3P stRte to tIle continuulT1 S Rnd D
states, and the 5, 's are the non-Coulomb phase shifts of those continuum states. (p~ ~'lp~ i'~)z„ is the
polarization density matrix of the combined hvo-photon system expressed in irreducible tensorial com-
ponents. A, and A, take on the values 0 and 2, rvhile I. takes on the values 0, 2, and 4.

Figure 1 defines the geometry of the system. The electron trajectory is described by the polar an-
gles 8 and q. The axis of polarization of the second photon defines the positive z axis. The polariza-
tion axis of the first photon lies in the x-z plane at an angle q vrith respect to this z axis. The laser
beams propagate along the y axis. With this geometry, the cross section may be expressed as

Qv I
d

=—const+ P o»Pz"(cosg) cos(lp),
l @=0

where P~"(cose) are the normalized associated Legendre polynomials and

(2)

The o.» depend on q through pA
~'~. When the in-

terlTledlate state ls 3 P3I2, there are ln genex'al
seven nonzero o ~„ in Eq. (2) corresponding to
(I. , M ) = (o, o), (2, o), (2, 1), (2, 2), (4, o), (4, 1),
and (4, 2). The presence of the (2, 1) and (4, 1)
terms introduce sin28 Rnd sin48 terms into the
angular distribution. For q = 90', the hvo sine
terms drop out; and for q =0, only the terms
(I.,M) =(0, 0), (2, 0), and (4, 0) appear in (2).

When the intermediate state is O'P»2, the A,
= 2 terms do not contribute, the angular distribu-
tion is independent of the (linear) polarization di-
rection of the first photon„and the distx'ibution

]o Oetectof

FIG. l. System geometry. The electron trajectory
is defined by 8 and p. The second photon polarization
axis defines the z axis. The axis of the first photon
polarization lies in the x-z plane at an angle q from the
g axis.

"[1+PP,(cos0)] .

The measurements &vere made by intersecting
a sodium beam with hvo linearly polarized, near-
ly collinear laser beams, one from a nitrogen la-
ser, the second from a dye laser pumped by half
of the nitrogen-laser beam. ' The polarization
directions mere rotated behveen laser pulses
through 18 intervals (always at a fixed angle q
between them), with the detector fixed to provide
rapid sampling of the angular distribution. The
photoelectrons &vere accelerated, detected by a
Channeltron, and counted.

Th ' t ed ate tate as t opt cally
rated. Photoelectron intensity was pr Uportional
to the product of the dye-laser and the N, -laser
intensities over a range of hvo orders of magni-
tude. The peak of the nitrogen-laser pulse [10
nsec full width at half-maximum (FTHM)] ar-
rived 5 nsec after the peak of the dye-laser pulse
(4 nsec FWHM) msurlIlg a stepwlse two-photon
lonlzat ion.

Examples of our experimental results are
shown in Fig. 2, for O'P»„and in Fig. 3, for
3 P3(2. In Fig. 2, the dotted cux've ls R leRst-
squares fit by an equation of the form

normalized to 1 at O'. The coefficients obtained
mere no=0. 041+ 0.02, u, =0,959+0.02, and P = (1
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Since the detector lies in the X-g plane of Fig. 1,
cp = 0 and (2) reduces to the form

W(9) =c, +c, cos26+c, sin29

+ c4 cos48 + c5 sln48. (5)

0
I

oo go4 ~SOo

()

FIG. 2. Experimental measurement on 32P
& j2 level

of sodium, Circles, experimental points; dashed line,
least-squares fit; solid line, theoretical curve. Both
curves are normalized to 1 at 0'.

—a,)/(ao+ ~) = 1.VV+ 0.10. Theoretical values, ob-
tained by the process described below&, are a,
= 0.062 50, a, = 0.937 50, and P = 1.667, consistent
with the experimental values. A fit by Eq. (4)
with a cos~6 term added shoe&ed the cos~I9 term
to be zero within the experimental error.

Figure 3 shmvs experimental and calculated an-
gular distributions taken through the O'P», level.

l.0 —:

1.0—.

Least-squares fits of the data with (5) are shown
as dashed curves in Fig. 3; the solid curves are
calculated angular distributions, using best-fit-
ting microscopic parameters. All curves are
normalized to 1 at O'. Table I lists the experi-
mental coefficients. The experimental angular
distributions clearly shoe& the distinctive fea-
tures of hvo-photon ionization. The cos40 term
is evident in all cases, and terms in sin2I9 and
sin48 are required to account for the asymmetry
in the cases q =65 and q = 96'. Note also that the
sine terms, with the coefficients c, and c„are
zero to within 0.1 standard deviation for g = 0'.

The general theoretical formula (2) contains
seven a~„coefficients, vrhile our distributions
are described by (5), which contains four inde-
pendent coefficients because me made measure-
ments only for q =0 and normalized the coeffi-
cients to 1 at 6 =0 . Ho@&ever, these normalized
values retain all the dynamical information, the
ratio of the radial dipole matrix elements d,/d„
and the partial-wave phase-shift term cos(5, —6,).

Starting arith an initial theoretical estimate' of
the matrix-element ra.tio d, /d, = 1.3 and picking
the arbitrary choice of cos(60 —6,) = 1, we ob-
tained first-trial angular distributions which
agree reasonably mell qualitatively arith the ex-
periment, but they shou some quantitative differ-
ences. The matrix-element ratio eras then varied
from +100 through 0 to —100, which produced

TABLE I. Experimental normalized least-squa, res-
fit coefficients (1-standard-deviation error range listed
under each value).

cg cg

l80'01 90'

8

FIG. 3. Experimental measurements on 3 P3y2 level
of sodium, for y =O'. Circles, experimental points;
dashed lines, least squares fit," solid lines, theoretical
curves. All curves normalized to 1 at 0'.

00 0.432 0.481 0.0012 0.087 0.0005
(0.008) (0.012) (0.011) (0.010) (0.011)

65.2' 0.596 0,470 0.193 -0.066 0.118
(0.012) (0.014) (0.018) (0.017) (0.015)

96 0.743 0.447 —0.015 -0.190 -0.070
(o.o16) (o.o21) (o.o25) ' (o.o2o) (o.o21) '

Because this value of g is very close to 90' sphere
the sin2n8 terms are zero, the values of c3 and c5 are
changing rapidly. Duplicate experiments indicate that
their values are not reproducible to within 1 standard
deviation.
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variations in the qualitative shapes of the angular
distributions, marked enough that we were confi-
dent, even from a visual inspection, that the ini-
tial choice for the para, meters was nearly cor-
rect. The final evaluation of experimental values
of the two dynamical parameters from the angu-
lar-distribution coefficients mas carried out by
searching the two-dimensional space of these pa-
rameter values to obtain a region of reasonably
good fit between the experimental and calculated
distributions, and then finding a best fit within
the region. The parameters must be the same
for all q. We also assumed they are the same
for the 3 P,&2 and 3 Ps&2 levels because the spin-
orbit coupling is small. These constraints as-
sure that there is sufficient experimental data to
overdeter mine the dynamical parameter s. The
parameter range which gave a reasonable fit is
d, /d, =1.& to 2.3 and cos(5, —5,) =0.8 to 1.0. The

TABI E II. Theoretical normalized e„coefficients,
using the best-fit values of the bvo dynamical param-
eters cro/o~ =2,0 and cos(50 —62) =1.0 and normalized
such that the value of the angular distribution at 6) =0',
p=0 is l.

C3 c4

65.2'
0.4785 0.4688 0
0.6207 0.4688 0.3505
0.7310 0.4688 -0.1416

0.0527 0
-0.0895 0.1051
—0.1998 -0.0425

best fit was at d, /d, = 2.0 and cos(5, —5,) = 1.0.
The corresponding best-fit values of c„are list-
ed ln Table G.
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We have observed spontaneous Raman processes in a sodium atomic beam. When one
sodium 3P I' fine-structure level is strongly excited by a dye laser, the other level, is
weakly populated by spontaneous Raman emission and the absorption of another laser pho-
ton. This effect is detected by further stepwise excitation plus photoionization. The ob-
served magnitude agrees mell with theory. This technique is much more sensitive than
methods involving direct observation of the Raman emission.

We have extended the recent multiphoton-ion-
ization studies by I.ambropoulos et al. ' and have
observed sPontaneous Raman process in an atorn-
ic beam of sodium. Nearly all previous experi-
ments on Raman processes in atomic systems
have involved the observation of stimulated emis-
sion, ' although spontaneous emission has been ob-
served in a dense cell of thallium. Combinations
of laser intensities and atomic densities in the
previous experiments mere many orders of mag-
nitude larger than those in the present work,
which uses tunable dye lasers and an atomic
beam. Under those conditions, the intensity of
Stokes or anti-Stokes radiation is much too small
to be observed directly.

The main features of our apparatus have been
described previously. Coincident light beams
from synchronized, flashlamp-pumped yellow and
blue dye lasers interacted at right angles with a
sodium atomic beam. The density of the atomic

beam was about 10" atoms/cm', and the power
densities of the yellow and blue lasers mere ap-
proximately 0.5 and 0.05 MW/cm', respectively.
After each laser pulse, the photoions mere col-
lected and accelerated into an electron-multiplier
detector by means of a suitably delayed, pulsed
electric field.

Figure 1 illustrates the two complementary
Raman processes which are involved in our ex-
periments. In Fig. 1(a), the 3p'P», level is pop-
ulated by resonance excitation from the 3s '8„,
ground state with a yellom dye laser. In the pres-
ence of the strong field of the yellow laser, there
is a probability of spontaneous decay from the
3p 'P», to a virtual level (shown as a broken line)
which ean be excited in resonance to the 3p'P»,
level by absorption of a second photon from the
yellow laser. The 3p'P», is thus weakly popu-
lated in the fie1d of a laser tuned to saturate the
3s 'S»2-3P 2P,

&~ transition. The photon emitted
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