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The scaling laws relating the critical exponents characterizing the ferromagnetic
phase transition are shown to be modified in the presence of quenched random magnetic
fields. The hyperscaling relation dv =2-&, for example, becomes (d+&„)v=2-&,
where the index ~„is negative and is related to the range of the ferromagnetic exchange
interactions. This breakdown of hyperscaling results from a singular dependence of the
thermodynamic functions on the scaling field associated with an irrelevant operator.

In a, recent Letter, ' Imry and Ma. (IM) discussed
the effect of quenched random magnetic fields on
the ordered phase of ferromagnets with short-
range exchange interactions. Arguing heuristical-
ly (but very convincingly) they concluded that for
space dimensionality d & 4 the presence of such
fields makes the spontaneously ordered phase of
systems with continuous symmetry (i.e. , number
of spin components n~ 2) unstable to the forma-
tion of domains. The magnetic moment of each
domain is oriented along the direction of the local
magnetic field, thereby lowering the energy of in-
teraction with the field. For d ~ 4 this lowering
more than compensates the increase in surface
exchange energy which results from the partition-
ing. For Ising systems (n =1) the direction of
magnetization cannot vary continuously across
domain boundaries and the surface exchange en-
ergy cost is correspondingly more severe. The
ferromagnetic state of Ising systems is theref ore
unstable to domain formation only when d ~ 2.

In addition to specifying these dimensionalities,
d~(n), below which ferromagnetism is destroyed
in n-component systems, IM predicted that the
critical exponents characterizing the ferromag-
netic transition in the presence of random mag-
netic fields have mean-field values for d&d, (n)
—= 6 but deviate from mean-field when dD(n) &d

&d,(n). Using standard renormalization-group'
(RG) techniques they computed g and v to first
order in e = 6 —d. Earlier, Lacour-Gayet and
Toulouse' studied the ideal Bose gas in the pres-
ence of a random source term, computing exact

critical exponents of the Bose condensation at
both constant volume and constant pressure. They
found violations of the familiar scaling laws re-
lating critical exponents. Since the critical be-
havior of the ideal Bose gas at constant volume
is identical' to that of the spherical model, which
is in turn equivalent' to the n = ~ limit of the n-
component model, one concludes that random
magnetic fields cause violations of scaling in the
n =~ system. It is natural to ask whether such
fields, presumably always present in real sys-
tems, precipitate a breakdown of scaling for fin-
ite values of n as well.

The purpose of this note is twofold: First, I
point out that despite the existence of a nontrivial
fixed point' of the RG transformation in 6 —e di-
mensions, conventional scaling laws do indeed
break down for all values of n. I derive a new
set of scaling laws to replace the familiar ones.
It is tempting, though fraught with the usual per-
ils of large e, to speculate that these relations
hold generally for dD(n) &d&d, (n). (Recall that
this range includes d = 3 when n = 1.) Second, we
note that the phenomenology of. the ferromagnetic
phase transition is complicated by the presence
of random fields; there are two distinct spin-
spin correlation functions that become long-
ranged near T,. One of these is unique to the
random system. I use the RG to determine its
scaling properties near criticality.

Following IM we consider the familiar' isotrop-
ic n-vector model with order parameter s(x)
coupled to a random field K,(x). The reduced
Hamiltonian in momentum space takes the form

pICo =
2 a

I
z(k'+&o)I s(k)l +un

2 ~ 2
'~[s(k) ~ s(k, ))[s(k,) ~ s(-k —k, —k, )] —K, (k) ~ s(k), (1)a Q 0
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where 0 (2 describes long-range exchange couplings' which die off as r " ' in position space, cr = 2 de-
scribes short-range couplings, and the h, (k) (a = 1, . . . , n) are Gaussian random variables with short-
range spatial correlations'. [h, (k)]»=0, [h,"(k)h, (k')]„,=0„&&'(k+k')f„(k), f,(0) —=h, '.

In the presence of K, (k) the quantity [(s(x)) ~ (s(x ))]„is nonzero even in pha, ses where [(s(x))]„vanish-
es. There are therefore two distinct correlation functions to consider:

G (x,x')-=[(s (x)s"(x'))]„—[(s"(x))(s"(x'))]„,
is the analog of the usual correlation 'unction studied in pure ferromagnets; its spatial dependence
near T, is characterized by the critical exponents v and g. The function

C (x,x')—= [(s (x))(s"(x'))l„—[(s (x))]„[(s"(x'))]„

(2a)

(2b)

on the other hand is peculiar to the random problem. ' Both, as we shall see, become long ranged near
the ferromagnetic transition; the extra "susceptibility" C(k = 0) diverges very strongly at T,

The RG methods of Harris and Lubensky" are readily applied to the disordered system described by
(1). As in pure systems, s', s', and all higher-order interactions are generated by the RG transfor-
mation. ' The random field induces randomness in the coefficients of all such terms under the action
of the RG. One writes a recursion relation" for the joint probability distribution P, (h, ,r„u„.. . ) of
these random couplings after l RG iterations. The various cumulants of P, are the analogs for random
systems of the ordinary (l-times iterated) coupling constants of pure systems. When d= 3@—e only the
three quantities r„u„andh, ' defined by

[r, (kk')]„=0 (k+k')r„[u,(kk'k "k' ")]„=5'(k+k'+k" +k' ")u, ,

and

[h, ( )kh~( k)]»=5„95'(k+k')f, (k), f, (0) h, ', =—

are "relevant. "" It is most convenient to use u, , r„and zv, =-u, h, ' as independent variables. In terms
of this set the recursion relations to O(e) are

u, +, =b "' '" u, [1—8(n+8)K~u, lnb],

r, +, =b' " (r, +4(n+2)(K~w, /o)[A' —(A/b) —2r, olnb]j,

w„,=b' '" ui, [1—8(n+8)K~w, lnb],

(3a)

(3b)

(3c)

where (2~)~K, is the surface area of the d-dimensional unit hypersphere and q' = o —2+7) =O(e'). ' These
equations evidently have, for e )0, a stable fixed point with w* and r* of O(e), u* = 0. The vanishing of
u* is a consequence of the "irrelevance"" of s' terms for d) 20 and results in the failure of the usual
scaling laws. To understand the mechanism of this breakdown, consider the schematic RG expres-
sion" for the singular part of the random-averaged free energy,

F(u„,5u „br,) = b F(u,b ~, bw, b " br, b r) (4)

Here bw, a.nd br, are the deviations (assumed in-
finitesimal) of w, and r, from their fixed-point
values, u, is likewise taken infinitesimal, and the
X's are eigenvalues of the RG recursion relations
linearized about the fixed point. " It follows read-
ily from (3) that xr is positive while A„and X

are both negative for small e. Equation (4) is
schematic in that we have treated u„5n)„and
8, as "scaling fields"" of the linearized RG. The
true scaling fields are linear combinations of u, ,

Reo, 5r„and the infinite number of additional
variables (here suppressed) which are generated'
by the RG transf or mation. It is easy to show,
however, that more careful treatment of these ef-

fects does not alter the results we shall obtain
from (4). Let us therefore proceed as if this
equation were literally correct. Setting u, equal
to u~* (or bw, =0) and identifying br, with the re-
duced temperature t = (T —T, )/T, and the thermal
eigenvalue X~ with the inverse of the critical ex-
ponent v (Riedel" ), we have F(u„t)=t""f (u, t " ~)

for some function f If f (x) were to a. pproach a
constant as x —0 then I -t'" and the usual scaling
law dv=2 —o would obtain. To see that this does
not occur here let us return to the Hamiltonian
(1) and imagine constructing a brute-force graph-
ical perturbation expansion for I as a double pow-
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FIG. 1. Typical graph for random-averaged free en-
ergyE. Each cross represents a factor of ko2.

er series in up and hp'. A typical term in this se-
ries is shown in Fig. 1. This term behaves like
uphp'; expressed in terms of the proper variables
Qp and Ã p it goes like u p 'up'. For inf initesimal
up the leading higher terms in the series behave
like u, ' as well. I conclude that f (x) -x ' as x
-0, whereupon 5'(u„t)-t"I~+""~for small t. The
modified scaling law 2 —o = v(d+A„) results; that
is, the factor d in the usual relation is replaced
by @+A„." Proceeding similarly one can show
that the other conventional scaling laws are al-
tered in identical fashion: The only effect of the
random field is to convert every factor of d in
these laws to a+A„." All exponents characteriz-
ing the thermodynamics and the correlation func-
tion G(x, x') near criticality can thus be deter-
mined in terms of three indices, say v, q, and

Wilson's Feynman-graph expansion technique"'
can be straightforwardly employed to compute q,
v, and A.„aspower series in c. To first order
one obtains" q = 2 —v, ov = I + (n + 2)e/2(n+ 8), and
X„=—cr. For the special case of short-ranged in-
teractions (@=2) I have calculated q and A„ to
O(e') and found that X„is exactly —2 to this or-
der. %hen n= ~, moreover, A.„=—o for all d be-
tween 2' and 3cr." I speculate on this basis that
A.

„

is identically equal to —0 for a/Jt values of n

and d for which a ferromagnetic transition oc-
curs.

It remains to compute the exponents describing
the behavior of the correlation function C(x, x')
near T,. For this purpose it is convenient to
write the Fourier transform C(k, t) as [G(k, t)]'
xD(k, t) and consider the graphical perturbation
series for the quantity D. One finds that D, like
E, behaves as up

' for small u„whence it fol-
lows via the usual RG route that C (k, 0) - k "~
and ( CtO)-t & with q=7I+X„and y = v(2 —q).
Thus are the new critical exponents associated
with C simply related to the old ones; knowledge
of v, q, and X„suffices to determine all relevant
critical indices.

Only in 6 —c dimensions with e infinitesimal

ean I display a legitimate fixed point of the recur-
sion relations (3) and predict a random-field-in-
duced modification of scaling laws with some as-
surance. I am postulating that this breakdown of
scaling persists in lower dimensionalities and
that A.„remains equal to —0 for all d, but this is
pure speculation based only on calculations to
O(e') and the exact n=~ results. Since Ising sys-
tems with short-range forces in random fields
are expected' to undergo ferromagnetic transi-
tions down to d = 2, the possibility of scaling vio-
lations in the d = 3 Ising model is an intriguing
consequence of this speculation. "

I am grateful to J. Chalupa, S. Ma, and M. %or-
tis for helpful discussions.
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Inclusive J/g production from nuclear targets is discussed in a model that describes
well the multiplicity and momentum distributions of particles produced in high-energy
hadron-nucleus collisions. At incident energies below 30 GeV, cumulative effects (via
energy rescaling) lead to an A dependence of the cross section for p+ A J//+X that is
much stronger than the commonly assumed A or A dependence of this cross section.

The cross section for inclusive production of
J/g in hadron-induced rea.ctions shows a dramat-
ic increase with incident laboratory momenta
from p&,b= 20 GeV/c to p&,&= 1500 GeV/c, resem-
bling a threshold phenomenon. ' Experimental
data have been obtained mainly from nuclear tar-
gets. ' Cross sections for nucleons have been ex-
tracted by dividing the nuclear cross section by
either A or A", where A is the atomic number
of the target nucleus. Here we show that such a
procedure may lead to an overestimate of J/g
production in pp collisions and to an underesti-
mate of J/g production off heavy nuclei, mainly
at energies below 30 GeV. Verification of our
predictions for p+A -J/(+A' has practical conse-

quences for the production of new particles.
According to the coherent tube model" (CTM)

the interaction of a hadron with a target nucleus
results from its simultaneous collision with the
tube of nucleons of cross section o that lie along
its path in the target nucleus. ' Thus if there are
i nucleons within the tube, the cumulative square
of the center-of-mass energy, s, , is approxi-
mately given by

S; = 2irnP )at„

where m is the nucleon mass and p„bis the labo-
ratory momentum of the incident hadron. Assum-
ing that in the respective center-of-mass systems
the hadron-tube collision resembles a hadron-nu-
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