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Resonance Cones below the Ion Cyclotron Frequency: Theory and Experiment*
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The resonance cones existing below the ion cyclotron frequency, ~„, are shown, the-
oretically and experimentally, to be the asymptotes of hyperbolic constant-phase sur-
faces of low-frequency ion acoustic waves. Above ~„ the surfaces transform into ellip-
ses that are related to the electrostatic ion cyclotron waves and ion acoustic waves.

Although the electrostatic Fouriex modes, &p(x, f) -exp(ik x -i~t), in the ion cyclotron regime have
been known for some time, there has not been, except for the work by Kuehl' and Burrell, ' any attempt
to make a detailed analysis of the wave field excited by a Poi~t source. This type of source may be
thought of, mathematically, as the GI een's function for the finite-size grids and probes commonly used
to excite waves in laboratory plasmas. '4

In general, point sources (and other finite sources) excite a broad spectrum of spatial Fourier modes
-e' '". The total field of this broad spectrum does not necessarily correspond to the field of a mono-
chromatic (single-k) Fourier mode. Fisher and Gould, while analyzing the resonant cone field of point
sources in the electron plasma wave regime, pointed out that resonance cones should also exist at fre-
quencies ~ below the ion cyclotron frequency ~„. Kuehl' calculated the fields for ~ &u„. and finite T„
and found the existence of resonant cones making an angle O, -sin (e/v„) with respect to the confining
magnetic field B. Burrell' found a result similar to Ref. I and, for the case of w„. »w, ~~„considered
the additional effect of finite T,

In this Letter we present the first experimental evidence of ~ &~„resonance cone behavior. %e fur-
ther show, both theoretically and experimentally, that (1) the ~ &~„resonance cones are the asymp-
totes of hyperbolic constant-phase surfaces and (2) for &u & &a„ these surfaces transform into ellipses
which are related to both the electrostatic ion cyclotron waves and ion acoustic waves. For clarity and
completeness we outline the derivation of the Green's function"; the properties of this function deter-
mine both the resonance cone behavior and the hyperbolic-to-elliptic transition described above.

Let us first briefly review the modes existing around ~ = ~„. Kith the assumption 4 jjv~ « ~ «0 jjv~~e
the electrostatic dispersion relation becomes'

e(k, (u) =1+

Equation (1) has two roots:

(d &
= (((d~ + N~, ) + [((d~; + Q)~ ) -4(d~; (d~ cos $j j/2 (2)

where &u, '=k'c, '/(1+k'A. ~,'), ( = cos '(k 8/k8) and the other symbols have their usual meanings. &u+

lies above &u„, and ~ lies below. For ~,'/~„. '» I, &u+' ——~„.'si n'$+~, ' (ion acoustic wave) while cu
'

„'cos'g (second ion cyclotron wave). For e,'/~„' « I, &u, ' = ~„.'+~,' sin'$ (electrostatic ion cyclo-
tron wave) while w ' =a,'cos'E (low-frequency ion acoustic wave).

Let us now calculate the field excited by a test charge, q„oscillating at a frequency ~ [where +
O((d~i) && 4)&&j. The potential + 1s given by

fko x- j(dt
q(x, f) =(») ' (3)k'e( k, (u)

Using the cylindrical coordinates k ~~, k ~, P and noting k x =k ~p +k ~p cosy, we find on performing the y
integration

y(x, t) =-
IT De jl

Ki p exp(2K II 8/A. Dz -l(dt)

De

where v~=k~A~„v~, =k ~~X~, , d~~ =~~ /&u'-I, and d~=1-e~ /(~'-&u„'). With use of the method of
residues for the Kjj integration, the K~ integral becomes a Hankel transform, tabulated in Erdelyi et
aI. ' Note that dj, &0 always, but d~&0 for ~'&~„.' and d~&0 for ~'&~„'. For ~&~„Ref. 7 gives the
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following simple results: (a) For 0 &p'/d~&z'/d~~,

q, exp[i(z'/d~, p-'/d, )"'/ZD, iu-)f]
1/2 d ( 2/d 2/d )

1/2

(b} for 0 &z'/d
~~

& p'/d~,

-iq, exp[-(p'/d~ —z'/d~~)"'/gD, -iu)f]
( 2/d z2/y )~&2

!I

(5a)

(5b)

where z and p are cylindrical coordinates. For x»„, Ref. 7 shows that the potential is again given
by Eq. 5(a}, which is now valid for all p, . [Equation 5(a) is similar to Eq. (20) of Ref. 1 and Eq. (21)
of Ref. 2; however, K~' of Ref. 1 should be replaced by d~ since ~/4!Iv~, «1, and there is also a mi-
nor difference of (I -&u'/~~;) ' in the phase. ]

Equations 5(a) and 5(b) may be interpreted by examining the quantity (z'/d
~~

-p'/d~) '~'/Z~, in the lim-
it ~~,.'/~„. '-~. In this case

(z /d -p /d ) /A. [1—((d /(d ) Sin 0] MY/C (6)
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FIG. 1. (a) Constant-phase surfaces for ~/~„. & 1.
These are hyperbolas having asymptotes (dotted lines)
at angle O, =tan '(d~/d!!)' '= sin '(~/~„). For 0'0, the
wave is evanescent. (b) Constant-phase surfaces for
~/~„& 1. These are now ellipses. (c) Experimental
setup. (d) Amplitude profiles; f„.=705 kHz; p =0.64
cm.

where r=(z'+p')"' and 0=tan '(p/z). Note that
0, an angle in real space, is not the same as (,
an angle in k space.

Equation (6) determines both the phase a.nd the
amplitude of Eq. (5), and thus shows how Eq. (5)
is related to both the resonance cones and the
dispersion relations discussed after Eq. (1). For
~ & u„, d ~ & 0 so that the surfaces of constant
phase are hyperbolas, as shown in Fig. 1(a).
There are resonant cones at the asymptotic angle
of the hyperbola. s 9, =—sin '(u&/&u„), since at this
angle the quantity in Eq. (6} vanishes, causing the
potential in Eq. (5a) to diverge. ' For angles 9

&8„ the waves, now described by Eq. (5b), are
evanescent [evanescent region is shown in Fig.

! 1(a)]. For 8=0 the waves obey the dispersion
relation ~ =kc„with no resonance at co = co„.
From the 0=0 result it can be seen that the rea-
son grids have worked well for parallel wave
propagation experiments' is that they effectively
enlarge the region where 6 =0 [cf. Fig. 1(a)].

In contrast, when v &e„, d~&0, and Eq. (5a)
now shows that the surfaces of constant phase
a,re ellipses; cf. Fig. 1(b).

Our experiment was designed to show the exis-
tence of su &~„.resonance cone behavior and also
to demonstrate the transition from u/u„. & 1 to
&u/&u„&1. A probe, located at the center of the
L3 plasma (He gas, B = 0.5-2 kG, n-10" cm ',
T, - 2-5 eV, T; &0.1 eV, other parameters given
in Rellan and Porkolab' and driven by an oscilla-
tor, excited waves either above or below ~„.
The experimenta. l setup is sketched in Fig. 1(c):
Waves were picked up by an axially translatable
probe that could also be rotated to have different
radial displacements, p, from the transmitting
probe (2—5 mm probe lengths were used; no de-
pendence of field pattern on probe length over
this range was noted).

Figure 1(d) shows, for p=0. 64 cm and a se-
quence of frequencies, plots of wave amplitude
versus z. (The modulation of the amplitude pro-
files comes from a beating of the wave with a
simultaneously excited, ' long-wavelength electro-
magnetic mode. ) Below ~„/2v = 705 kHz the pro-
files have two peaks; these are the cones. As ~
-~„the cones move together, since 6, [cf. Fig.
1(a)] is increasing. The cones have finite ampli-
tude because the potential on the transmitting
probe was finite; in the theory the potential on the
point charge was infinite, so that the equipoten-
tial surfaces passing through the point charge
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FIG. 2. (a). Interferometer signals for ~/~„=0.57.
Constant-phase surfaces, shown by dashed lines, are
hyperbolas. B =1.85 kG; He gas, (b) Same as (a) ex-
cept & changed so that ~/~~; = 1.28. Constant-phase
surfaces are now ellipses.

(i.e. , the cones) were also infinite. [Inclusion of
damping in the theory shows that the resonance
varies as (~/4, )'~'; this also acts to keep the res-
onance finite. ]

Measurements of the hyperbolic (elliptic) phase
surfaces and 0, were made using a standard in-
terferometer system. Typical experimental re-
sults for fixed ~„.and two values of ~ are shown
in Fig. 2. The constant-phase surfaces, shown

by dashed lines in Figs. 2(a) and 2(b), clearly
demonstrate the transition from hyperbolic be-
havior for ~ &u„. to elliptic behavior for ~&~„,
in agreement with the theory shown schematically
in Figs. 1(a) and 1(b). Plasma drifting from the
source (located on the right-hand side of Fig. 2)
caused the axial asymmetry ln Fig. 2, The effect
of this drift was eliminated from measurements
of the cone angle (i.e. , asymptotic angle of hyper-
bolas) by using the distance Az [shown in Fig.
2(a)] to determine an avera. ge distance (i.e., Zt, z/
2) between the innermost hyperbolas a.nd z =0.
Plotting Z4z/2 versus p and using the relation
tant/, =dp/d(Az/2) then gave II, . Figure 3 shows
sin&, plotted versus frequency'; this functional
dependence constitutes the first experimental
demonstration of ~ & ~„resonance cone behavior.
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FIG. 4. Same as Fig. 2{a) except that &„ is changed
to give ~/~„=1.90. Constant-phase surfaces are now

ellipses. B =555 G.

Finally, to confirm the dependence of the field
geometry on ~„', interferometer measurements
were made for the same ~ as Fig. 2(a) but with a
different x„.. These measurements, an example
of which is shown in Fig. 4, again demonstrate
the transition from hyperbolic surfaces when ~/
~„&1 to elliptic surfaces when ~/444„& 1.

To summarize, for ~ & ( „the surfaces of con-
stant phase are hyperbolic; when ~ increases,
the asymptotic (i.e. , cone) angle 0, =sin '(~/~„.)
of the hyperbolas Icf. Fig. 1(a)] increases until
at e=&u„, II =44/2. Also, when a«u„so that 6,
&44/2, there exists an evanescent region for an-
gles 6&6),. For 6I=0 the wave phase corresponds
to the low-frequency ion acoustic mode. For w
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»„.the surfaces of constant phase become el-
lipsoids with major axis aligned perpendicular to
8, as shown in Fig. 1(b}. For ~&ru„and 6=7/2
the phase given in Eq. (6} corresponds to electro-
static ion cyclotron waves. For u» &„- the sur-
faces of constant phase become spheres corre-
sponding to isotropic ion acoustic waves,
= kc, . Experimental measurements provide
strong confirmation for this picture.
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A simultaneous work [T. Ohnuma et a/. , Phys. Rev.
Lett. 37, 206 (1976}] claims that (1) 0, saturates at
& 90 when - ~«, and (2) an involved group-velocity
angle g«/v~tI) dependence on T;/T, explains this. The
following should be pointed out: (a) Despite similar
parameters, no such saturation was observed here,
cf. Fig. 3. (b) Ohnuma et a/. , by probing only down-
stream of their transmitter (cf. their Figs. 1 and 2),
overlooked plasma drift effects. This may explain
their observed & 90 saturation, since downstream a
drift cause an aPpa~ent 9~ reduction and & 90' satura-
tion [cf. z& 0 of Figs. 2(a) and 2(bl here1. (c) Finite T;/
T, makes ~«/~~~~ 0 dependent; thus the one-one corre-
spondence of v~~/v~~~ to 9, (for which & is undefined)
ceases. Although unstated, Ohnuma et a/. , must have
chosen a 4 for the curves for finite T;/T, in their Fig.
3.

Interpretation of Precursors of Internal Disruptions
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A collisional instability driven by electron temperature gradients is described which
appears to explain the major characteristics of the precursors of the internal disruptions.
The threshold is reached when a certain parameter )p( & u S. For the ST and TFIt toka-
maks, we estimate 16 ~p~ $5 at the radius where q=1. For ~p~ =3, the theoretical
growth rate y,h

- (2-3) & 10 sec compares well with the experimental value y - 3x 10
sec . The predicted shape of the wave profile is also in qualitative agreement with ex-
periment.

One of the remarkable features of tokamak dis-

chargess

is the occurrence of internal plasma dis-
ruptions' ' which are accompanied by m = n = 1
"precursors. " Existing theories have attempted
to explain the precursors by internal kinks' and
tearing modes. ' lt appears, however, that the
problem is not completely resolved as yet.

The most usual interpretation seems to be that
the precursors trigger the internal disruptions,
the main observable characteristic of which is a
flattening of the temperature profile. This leads
us to believe that the precursor should be a tem-
perature-gradient-driven instability since quasi-
linear theory, usually, predicts self-healing of
the pla, sma. Interna. l kinks and "standard" tear-
ing modes are not, according to this reasoning,

proper candidates to explain the precursors. It
is worth noting in this connection that the growth
rates predicted in Ref. 4 disagree by almost an
order of magnitude with the observations of Ref.
1, while Hazeltine, Dobrott, andWang' come to
the conclusion that, among different tearinglike
instabilities, a "thermoelectric" mode is the
most serious candidate, giving plausible growth
rates in particular. Unfortunately effects of fi-
nite Larmor radius are completely ignored in
this paper, although estimates for present toka-
mak parameters indicate that the resistive layer
is barely 1 ion Larmor radius thick.

We propose here that another instability, spe-
cifically a, temperature-gradient —driven collision-
al drift wave (it is noted, however, that trapped-
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