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The analytic continuation of homogeneous, isotropic turbulence in nonintegr al dimensions
d is not realizable for d &2 because the energy spectrum generally becomes negative. Re-
cent arguments, in favor of a,n $ crossover dimension below which the Kolmogorov 1941
theory is exact, are found questionable. The existence of a crossover dimension d, ( 2.03)
at which the direction of the energy cascade reverses is supported by a second-order clo-
sure calculation.

The existence for critical phenomena of cross-
over dimensions 0, above which the mean-field
theory is exact, and all the recent work on d, -d
expansions lead one naturally to ask the same
questions for fully developed, incompressible
turbulence, a problem generally believed to be at
least as difficult as critical phenomena, ' ' For
homogeneous isotropic turbulence with Gaussian
initial conditions and forcing, the energy spec-
trum E(k) is, in principle, a well-defined func-
tional of the forcing and initial spectra, which
may be continued analytically in noninteger di-
mensions using, for example, the formal Reyn-
olds number expansion.

(I) In a recent Letter, Forster, Nelson, and
Stephen' analyze an infrared problem for d= 2 and
find, for d &2, a nontrivial fixed point. We do be-
lieve that d =2 is a crossover dimension, but on-
ly in the sense that, for d &2, the homogeneous
isotropic turbulence problem is no longer mean-
ingful. Indeed, we have shown that for d &2 the
energy spectrum, if initially positive, will usual-
ly become negative for arbitrarily small times.
The essence of the proof is that (i) for small
times the quasi-normal approximation is exact to
O(t') and (ii) the quasi-normal expression of the
transfer has an emission coefficient, usually de-
noted' ' a», which when p =q becomes negative
for d &2, whereas it is always positive for d ~ 2.
The realizability [in the sense E(k) ~ 0] of the
analytic continuation into nonintegral dimension
d &2 remains open in general, but can be settled
within the framework of second-order closures.

(II) An —,
' crossover dimension for intermittency

corrections to the Kolmogorov 1941 theory (K41)

has been proposed independently by Nelkin' and
de Gennes. ' The de Gennes derivation is parallel
to the classical Ginsburg argument for critical
phenomena: Denoting e(x) the local dissipation
v(Vv)' and assuming K41, we have for separa-
tions s lying in the inertial range, by dimension-
al analysis (e is mean energy dissipation),

([&(s) —&][s(t)) —s])- ~'e"'s ~'.

Since the volume element goes like s" 'ds, the
mean square dissipation fluctuation has an infra-
red divergence if d&-,'.

Our point is that v(Vv)' is a dissipation-range
quantity and that its inertial-range fluctuations
are irrelevant. If, instead, we use the nonlinear
expression of the rate of transfer of energy s(x)- v V (v' j2+ P ), we find

([s(s) —e][s(6) —s])—e's',

and the crossover dimension becomes zero, Al-
ternatively, we can argue that the inertial-range
properties should not be changed if the dissipa, -
tive term in the Navier-Stokes equation, namely
vW', is replaced by —v(-V')", where o. is called
dissipativity. Indeed it is shown' for a certain
model equation that the inertial-range behavior
is unaffected by the dissipativity in the limit of
zero viscosity, a.s long as a & n „=(n —l)(2,
where n is the exponent of the inertial range. It
is clear that in de Gennes's (and also Nelkin's)
derivation, the crossover dimension is dissipa-
tivity-dependent (e.g. , for o. =2 we find d, =—", but
for o. =o. „=-,', we recover d, =0 again). All this
suggests that K41 is invalid in any rea. lizable (d
~ 2) dimensions.
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(III) We turn to the question of the conservation
laws for the inviscid unforced equations and the
relationship with the direction of the energy cas-
case. For d = 3, there is only one known positive-
definite invariant, the energy I, E(k) dk; the ener-
gy cascade is to high wave numbers (direct) and

presumably there is an ultraviolet catastrophe
(a singularity appears at a, finite time). For d =2,
there is the additional conservation of the entropy

I,"k'E(k) dk leading to an inverse energy cascade
in the infrared direction; furthermore, there is
no singularity at a finite time. "'" What about 2

(d(3? We have checked that the entropy does
not go over continuously into another conserved
quantity. However, a continuity argument indi-
cates that inverse transfer will still be favored
for d= 2 since entropy is nearly conserved, at
least for short times. But will this behavior per-
sist, or will energy eventually leak through to
high wave numbers?

In the present state of turbulence theory, it
seems very difficult to decide this point directly
for the analytic continuation of the primitive sta-
tistical Navier-Stokes equations. So, instead,
we have used a realizable second-order closure
introduced by Kraichnan, the test field model
(TFM), which can easily be extended to noninte-
ger d &2"";the following results have been ob-
tained both analytically and numerically (Reyn-
olds number R = 10'). For any d) 2, there is an
inertial-range solution" with E(k)-k 'i', the en-
ergy cascade being in the infrared direction for
2 & d &d, (d, ~ 2.03), '~ and in the ultraviolet direc-

tion for d&d, . When energy is injected in a nar-
row wave number band near k = 1, we obtain for
d )d, (e.g. , d =2.05), a stationary direct cascade
and for 2 &d &d, (e.g. , d = 2.02) an inverse cas-
cade such that the bottom of the ——,

' range moves
to ever smaller wave numbers (Fig. 1). In the
former case, total energy saturates and in the
latter, it increases linearly at the injection rate
(Fig. 2). Since in the numerica. l integrations, the
dimension differs from 2 by only a few percent,
a naive continuity argument suggests a quasi-two-
dimensional behavior for about a hundred turn-
over times at forcing wave numbers (here of the
order of one); this is why the TFM equations
have been integrated up to t = 5000. For 2 ( d (d„
in addition to the infrared —-,'range, there ap-
pears an ultraviolet —n(d) range with n varying
from 3 to -,'(Fig. 1). For d =2, this is the usual
entropy inertial range"" but for 2(d(d„no
conserved quantity cascades along this range. We
have also considered the unforced equations with
smooth initial data in the inviscid limit: For any
d & 2, the entropy becomes infinite at a finite time
t~(d) proportional to (d —2) ' near d =2; for 2&d
&d„ the energy is conserved indefinitely as it is
for d = 2, whereas for d &d„energy is dissipated
at a finite rate after t~ (Fig. 3). This is consis-
tent with the results on the direction of the ener-
gy cascade. The behavior of the TFM equations
at d, has not yet been investigated.

In conclusion, we stress that a second-order
closure leads to an inverse cascade for 2(d(d,
in spite of the absence of an entropy-like con-
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FIG. j.. Evolution of the energy spectrum below and
above the crossover dimension d, = 2.03. For d =2.02,
there is an ultraviolet power-law range and a —$ in-
frared energy-inertial range proceeding to ever small-
er wave numbers. For d =2.05, there is an ultraviolet
energy inertial range which extends slightly into the in-
frared direction.

1000 3000 5000

t Ime

FIG. 2. Evolution of the energy with forcing below (d
=2.02) and above (d =2.05) the crossover dimension.
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of this work.

FIG. 3. Evolution of the energy E and entropy & with-
out forcing in the limit of infinite Reynolds number.
The catastrophe time t~(d) varies like (d-2) ~ near
d =2.

served quantity. This leads us to conjecture the
existence of a similar crossover dimension for
the primitive equations. "
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Auxiliary heating of a linear 0-pinch plasma column by an externally driven radial mag-
netoacoustic oscillation has been experimentally investigated. The axial field of the 0

pinch eras modulated in time at the frequency of the plasma's fundamental radial magneto-
acoustic oscillation. The dissipation in the plasma column was sufficient to transfer in-
to the plasma at least 9",& of the energy stored in the auxiliary capacitor bank used to
drive the oscillation.

Driven radial magnetoacoustic waves are a po-
tential form of auxiliary heating in 6-pinch de-
vices following the initial implosion. We report
here on preliminary experiments to investigate
such heating. Small-amplitude m = 0, k = 0 natu-
ral radial oscillations were observed'-' and ex-
pla. ined theoretically' on early 0 pinches. In the
results reported here, tne main axial confining

field was weakly modulated by an auxiliary bank
at the resonance frequency of the fundamental ra-
dial oscillation. The amount of additional heating
so obtained was inferred from the plasma temper-
ature, at a. later time after the column had be-
come quiescent. This temperature was compared
with that measured in the absence of resonant
modulation of the confining field.


