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It is shwvn that a region containing closed timelike lines cannot evolve from regular
initial data in a singularity-free asymptotically flat space-time. Furthermore, the cau-
sality assumption made in the black-hole uniqueness proofs is justified: It is demonstrat-
ed that no physically realistic nonsingular black hole can have a causality-violating extex"-
lor.

There are many solutions' to the Einstein equa-
tions which possess causal anomalies in the form
of closed timelike lines (CTL). It is of interest
to discover if our universe could have such lines.
In particular, if the universe does not at present
contain such lines, is it possible for human beings
to manipulate matter so as to create them( I
shall show in this paper that it is not possible to
manufacture a CTL-containing region without the
formation of naked singularities, provided nor-
mal matter is used in the construction attempt.
More precisely, I shall show that a causality-
violating region which is visible from infinity
cannot evolve from regular initial data in an
asymptotically flat, geodesically complete space-
time. Furthermore, I shall demonstrate that in
the generic case, it is not possible for causality
violation to occur outside a nonsingular black
hole which forms from regular initial data. This
proof justifies the causality assumption made in
the Israel-Carter-Bobinson black-hole unique-
ness theorems. '

Causality assumptions are also made in the
Hawking-Penrose singularity theorems. I have
proven several theorems which collectively show
that causality violation is unlikely to prevent the
formation of singularities. These results will be
published elsewhere. '

My notation will be the same as that of Hawking

and Ellis (HE).' (A proposition of HE—Proposi-
tion 4.5.12, say —will be denoted P 4.5.12.)

The notion of "regula, r initial data in asymptoti-
cally flat space-time" is made precise by the fol-
lowing definition: An asymptotically flat space-
time (identical to a weakly asymptotically simple
and empty space-time') will be said to be partial-
ly asymptotically predictable from a partial Cau-
chy surface S if D'(S) Elk 0 Q and D (S) Ayg Q for
all generators A. of 9' and all generators y of 8
(Closure means closure in MA &M. )

Imposing the condition of partial asymptotic
predictability on a space-time serves two pur-
poses: First, it makes cretain that the disjoint
surfaces J' and 8 are in the boundary of the
same asymptotically flat region. (From the defi-
nition of weakly asymptotically simple and empty,
it would be possible for g' to be in one asymp-
totically flat region and 8 in another. ) Second,
it assures the existence of a partial Cauchy sur-
face; the existence of such a surface is a mini-
mum condition for the existence of regular initial
data. . Furthermore, the partial Cauchy surface
is required to be "nice" in the sense that at least
some of the structure of 8' and 8 can be predict-
ed from initial data on 5. If S were nor required
to be "nice, " then the breakdown of prediction
could arise from the choice of partial Cauchy sur-
face, and not from the formation of CTL or sin-
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gularities. {An example of a "bad" partial Cauehy
surface is given by Penrose, ' Fig. 34.) Physical-
ly, the existence of a "ruce" S means that the be-
ginning of the causality-violating region is lo-
cRllzed.

The following theorem shows that a time ma, -
chine cannot be constructed without the formation
of singularities; CTL cannot arise from regular
1nitlRl dRtR ln Rn asymptotically flat~ geodes1cRl
ly complete space-time.

TAOOFe&l 1.—-An asymptotically flRt space-time
(M, g) cannot be null geodesically complete if the
following conditions hold: (a) A„R'K'o- 0 for all
Ilull vectol'8 K . (11) The geIlel'lc colldltioII holds
on (M, g). (c) (M, g) is partially asymptotically
predictable from a partial Cauchy surface S.
(d) The chronology condition is violated in

8'(S)A J (8').
[Note that condition {a) follows from the Einstein
equations and the weak energy condition. Condi-
tion (d) says that CTL arise to the future of S and

are visible from infinity. ]
The idea behind the proof is quite simple; I

first show that under the above conditions there
exists a null geodesic which never leaves H'(S).
This geodesic cannot be complete, for (a) and (b)
imply that every complete null geodesic has a
pair of conjugate points. The rigorous proof uses
the following two propositions:

Projosition I Let S b.e—achronal and closed.
Then if for some point P & S there is a neighbor-
hood U such that intD'(S) A U is empty, then S A U
=H" (S) A U.

proof Consider a point q in S A U. If every fu-
ture-directed timelike curve y through q leaves
D'(S) at q, then8'(q)AD'(S) = Q, so that q &H'(S).
Thus if S A UwH'(S) A U, there exists a point
y c 8 0 U such that there is through y a future-di-
rected timelike curve segment y with nonzero
length in D'(S) A U. But since any timelike curve
can intersect H'(S) at most once and S at most
ollce, It follows tllat 'y AD (S) could coIlslst of at
most two points and this contradicts the nonzexo
length of yAD'(S) ilU.

Prop&&ition Z—If (M, g) is partially asymptoti-
cally predictable from S, but 8' does not satisfy
O' A J'(S) CD'(S), then there exists a null geo-
desic generator If of H'(S) which has a future end

point p one'„such that If A[MU8'JCMU{ p}.
Proof Since O'A 4'(S)QD'(S), there exists a

point q on some generator A. of 8', such that
q& D'(S), but. q & J"(S). Since (M, g) is partially
asymptotically predictable from S, there is a

point P e A to the past of q such that P c BD'(S)
A8'. [Since P t-: D'(S)C J'(S) and P, q ra-, we
must have P & q; otherwise q would be in D'(S).I

Now p must tie 111 eltllel' S 01' H (S) (ol' both) 81Ilce
8D'(S) =H'(S) US.

I now show that P & S. Suppose P ~ S. Let I, be
a sequence of points in J'(S)A A which converges
to p. I.et N be any normal neighborhood about P
with compact closure, Then there exists some
number j such that from each I,. with i&j there is
a past-directed timelike curve y, which inter-
sects S at the point: 8, and y,. C:N. [Such past-di-
rected y,. exist because every past-directed curve
through a point t,. c 9' enters M immediately af-
tel pRsslng through t ~ since otherwise g could
not be isometric to the 9' of the asymptotically
simple and empty space-time associated with

(M, g).] Since 8' is locally achronal, s, e M.
That is, s,. ~ 9'. Since SAM is spacelike, it fol-
lows from Proposition 1 and the fact that H'(S) is
null that s, + H'(S), and that intD'(S) A y,. is non-

empty. Since D (S) 18 closed and t; + D (S) it. fol-
lows that y, AH'(S) is nonempty for all i &j. Thus
for every normal neighborhood N of P we have
that Nfl MA H'(S) is nonempty. Since by P 6.5.3,
II"(S) is generated by null geodesic segments,
there must be a generator n of H'(S) which has
an end point atP, and nA8' =(P}. But P cannot
be the past end point of n since no past-directed
null geodesic from M ean intersect 9'. Further-
more, P cannot be the future end point of n,
since at p, II. would leave J'(S) and enter J (S).
This is impossible since the space-time is time
orientable. Thus we have a contradiction, which
implies P +S.

Thus P e H'(S), and since P e D'(S) —S, every
past-directed timelike curve from P is in intD'(S)
for some nonzero proper-time length before in-
tersecting S. One can introduce normal coordi-
nates (x', x, x', and x') in a normal neighbor-
hood N about P with 8/&x' timelike such that the
curves f x ' = const (i = 1, 2, 3 )j intersect both 8'(p)
AN and8 (P)A¹ (We consider N to be a subset
of M. ) Details of the construction of such coordi-
nates in some N can be found in Ref. 6, p. 23.
Since for some N we have 8 (p) flNC:D'(S) A M
and 8'(P)flD'(S)= Q, each curve x' =const must
intersect H'(S) once and only once. Consider a
sequence of points t,. in J'(p) A X AN which con-
verges to P. Then for each t,. there will be a
curve X,. of the family f x' =const} which passes
through 5, %'e can choose N such that all curves
(x' =const} intersect 8' at most once. Thus each
A,. will intersect H'(S) in M, and so for every
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neighborhood U of P, H' (S)Il M {lU is nonempty.
By P 6.5.3, H'(S) is generated by null geodesic
segments without past end points or with past end

points only at edge S. Thus P must be the future
end point of a generator q of H'(S) with q flN A8'
=I P] since if q ClN tl8' consisted of more than
one point g 0 N would lie in O'. Furthermore, g
must have no past end point in M Ug' since such
an end point would lie only on edge SC:8' and no
null geodesic segment from M can intersect g'
in the past direction. Thus q is a null geodesic
generator of H'(S) with future end point P on 8',
such that q Il [M U8'] C M U fpj.

Proof of Theorem f.—First of all, note that it
is not possible for the chronology condition to be
violated at a point on J (8') jlJ'(S) but not in
intr J (8')] A J'(S), since this wouM contradict the
achronality of J (8'). Thus chronology must be
violated in intJ (8'), which implies that 8' Jl J'(S)
is nol a subset of D'(S). Since (M, g) is partially

asymptotically predictable from S, Proposition 2

implies that there is a null geodesic generator rj

of H'(S) which has a future end point on 8', such
that q P9' consists only of that end point. Pick
a point P on rj in M. If v is an affine parameter
on q with r~(v, ) =P, then v =+~ when q reaches 8',
because the affine parameter v in the metric g is
related to an affine parameter V in the metric g
by dvjdv=Q '. As 0=0 at SM, fdv diverges
(HE, p. 222). Thus q is future complete. If q
were also past complete, then by assumptions
(a}, (b), and P 4.4.5, q would contain a pair of
conjugate points. However, by P 6.5.3, q can be
continued into the past indefinitely without leav-
ing H'(S), and so by P 4.5.12, H'(S) could not be
achronal if it possessed a pair of conjugate points.
But H'(S) must be achronal; hence rl cannot be
past complete. This completes the proof.

The previous theorem can be generalized to
demonstrate the uniqueness of Kerr black holes.
In the proofs showing uniqueness, it is assumed
that the causality condition holds in the region
exterior to the black hole and also on its surface.
I will Pyove that the causality condition holds in
these regions for any physically realistic black
hole formed from regular initial data, provided
that cosmic censorship holds (this phrase is de-
fined below). JI will use the term "black hole" to
refer to an asymptotically flat solution of the Ein-
stein equations in which there is an event hori-
zon J (8'). This is different from the HE defini-
tion {p. 315), for in that case, a black hole could
not exist by definition in a region with causality
violation, since the HE definition required future

asymptotic predictability. The following theorem
essentially shows that any black hole in my more
general sense would possess the future asymptot-
ic predictability required by the HE definition. J

Theorem 2.—If a black hole forms in the future
of a partial Cauchy surface S from which the
space-time is partially asymptotically predict-
able, then the causality condition holds in J (8')
Jl J'(S) provided that the following are true:
(a) The space-time is generic. (b) II„K'K'~ 0
for all null vectors K'. (c) The cosmic censor-
ship hypothesis holds; i.e., all causal geodesics
in J (8') &J'(S) are complete. '

In order to prove Theorem 2, we will need a
third proposition.

ProPosition 3 Let.—X(t} be a complete, closed,
null geodesic. For any point q of A. , we will have
q«q, provided that (a) the space-time contain-
ing X is generic and (b) R„K'K'~ D for all null
vectors K'.

Proof: Since A is complete, then by conditions
(a), (b), and P 4.4.5, it must contain a pair of
conjugate points. Furthermore, there will exist
an affine parameter value t, at q for which the
conjugate points lie in the future of t„say at t,
and t» with t, & t, & t,. Also, there exists another
affine parameter value i, for which X(i,) =q and

By P 4.5.12, we have A(t, )«X(t, ). Since
A is null we have q =X(i,)&A.(i, ) and X(k,)&X(i,) =q.
Thus

or Q&& g.
Proof of Theorem Z.—Suppose that the causali-

ty condition were violated at a point p t-:J (8')
{lJ"(S) but not in int(J (8'}JCl J'(S). Then there
would exist a closed null geodesic X through P,
since we cannot have P «P, by the achronality of
J (8'). By assumption (c), X must be complete,
and so by assumptions (a) and (b) together with
Proposition 3, we have P«P, thus contradicting
the achronality of J (8'). Hence, if causality is
violated in J (8') A J'(S), it must be violated in
intIJ (8')]A J'(S). Furthermore, by assumption
(a) and (b) and Proposition 3, the chronology con-
dition must be violated in int[J (8')]ll J'{S)if the
causality condition is. But if the chronology con-
dition were violated in this region, the proof of
Theorem I implies that some null geodesic in
J (8') & J'(S) must be incomplete, contradicting
assumption (c). Hence, the causality condition
must hold in J (8')ll J"(S).

Scholium. —The preceding theorem does not
really py-ave that the causality condition holds in
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the situation of the Kerr black-hole uniqueness
proofs, since in these proofs very strong sym-
metry requirements are made, which are incon-
sistent with the generic condition: The genera-
tors of the Kerr event horizon, for example, nev-
er feel tidal forces. However, the black-hole
uniqueness theorems are frequently used to argue
that the final black-hole state is of Kerr type;
the symmetry requirements are then not expect-
ed to hold exactly for all time, just approximate-
ly in the limit of a long time after the black hole
formation. In this actual physical case the gen-
eric condition does hold, for the reasons given
on page 101 of HE. Thus Theorem 2 tells us that
although there may be nonsingular causality-vio-
lating black-hole solutions, they would have to
satisfy strong symmetry requirements exactly
over their entire history. In other words, the
existence of CTL would be an unstable property
of black holes. Hence, no physically realistic,
causality-violating, nonsingular black-hole solu-
tions exist.
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We report evidence, from a study of multihadron final states produced in the wide-band
photon beam at Fermilab, for the production of a new antibaryon state which decays into
ATt 71 7i'. The mass of this state is 2.26+ 0.01 GeV/c' and its decay width is less than 75
MeV/c'. We also report evidence of a state of higher mass (-2.5 GeV/c~) which decays
into the state at 2.26 GeV/c'.

This Letter is based on the study of multihad-
ron final states produced in the wide-band photon
beam at Fermilab. We report on the observation
of a narrow peak near 2.26 GeV/c' in the invari-
ant-mass spectrum of the A~ 7t p' final state.
We do not observe a significant peak near 2.26

GeV/c' in the Am'n'w final state. We also ob-
serve evidence for a state of higher mass near
2. 5 GeV/c' which then decays into Xw m z' (2.26
GeV/c') and m'.

Our results are based on studies of multihad-
ron data taken between September and December
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