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In models of fermions coupled to gauge fields certain current-conservation laws are vio-
lated by Bell-Jackiw anomalies. In perturbation theory the total charge corresponding to
such currents seems to be still conserved, but here it is shown that nonperturbative ef-
fects can give rise to interactions that violate the charge conservation. One consequence
is baryon and lepton number nonconservation in V —A gauge theories with charm, Another
is the nonvanishing mass squared of the 7.

When one attempts to construct a realistic mod- S0O(3):
el of nature one is often confronted with the dif-
ficulty that most simple models have too much o Mew=Cawr (@,4,v=1,2,3),
symmetry. Many symmetries in nature are slight- Now==0g (a,v=1,2,3),
ly broken, which leads to, for instance, the lep-
ton and quark masses, and CP violation. Here I
propose to consider a new source of symmetry Naaa =0.
breaking: t he Bc?ll-..Iackm anor_naly. . Thus isospin is linked to one of the SO(3) sub-

My starting point is the solution of classical .

. . . . 1. groups of SO(4). The solution has
field equations given by Belavin ef al.' in four-
dimensional (4D) Euclidean gauge-field theories. S=J8{A atx = - 8r2/g2, (6)
The solution is obtained from the vacuum by map-
ping SU(2) gauge transformations onto a large
sphere in Euclidean space. Taking the new,
gauge-rotated, vacuum as a boundary condition,
they obtain a nontrivial solution inside the sphere,
characterized by a topological quantum number.
I the Lagrangian is

(5)
7’au4=5au (a,un=1,2,3),

Since we have a 4D rotational symmetry, the so-
lution is not only localized in three-space, but al-
so instantaneous in time. I shall refer to such ob-
jects as “Euclidean-gauge solitons,”? EGS for
short.

There is a simple heuristic argument that ex-
plains why these solutions of the Euclidean field
e™=_1iG wGw', a=1,2,3, equations are relevant for describing a tunneling
(1) mechanism in real (Minkowsky) space-time, from

one vacuum state to a gauge-rotated vacuum (a
then the topological quantum number is gauge rotation that cannot be obtained via a series
o~ a of infinitesimal gauge rotations). Consider an or-
n ="/ 32772)]6’“’ G d'x, @ dinary quantum mechanical system with a poten-
with tial barrier V larger than the available energy E,
& a_ig G0 3) which I put equal to zero. Then the leading expo-
o T 2R uvaB ol . nential of the tunneling amplitude is exp(~[ pdx),
n is an integer for all field configurations in Eu- with
clidean space that have the vacuum (or a gauge P2/2m=V—E
transformation thereof) at the boundary. In Min- ‘
kowsky space » would be 7 times an integer (if we This corresponds to the classical equations of

G =0,A, = 0,A 0 +8€ . AL AT,

take d*x and €,,,, to be real and 4,, 3/3x, imagi- motion, except for a sign difference. Thus the
nary). leading exponential is obtained by replacing in the
The solution with » =1 in Euclidean space is equations of motion ¢ by 7 and computing the ac-
2 1yt =) tion S for a path from one to the other vacuum.
A== et (4)  [Note that both in Euclidean and in Minkowsky
g (e =x0)"+ space the gauge group is the compact group SU(2).]
Here, x, is free because of translation invariance Suppose now that we have in addition N mass-
and A is a free scale parameter; 7 is a tensor less fermion doublets coupled to the gauge field:
that maps antisymmetric representations of SO(4) . N
onto vectors of one of its two invariant subgroups glermion 5% 3ty D, ¥t 40
t=1
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where
Dt =0 ,9;f —3iT,,%A Y1, (8)

I will call the SU(2) index i “color” and the index
t=1,...,N “flavor.” The vector currents

Iy =iy, (9
and the traceless part of the axial vector current
I, =iy Y, (10)

are all conserved without anomalies. Thus we
have the exact chiral flavor symmetry SUN),
®SUMN)z® U(1). But the current

Jp5 =EtJy5tt
has an anomaly®

0,J,° ==i(Ng2/1612)G "G ", (11)

[

(010)= [DADY D exp [{LE (A) + £ (4, 9) + £ (4) + £ (4, 0) b,

Let us now compare this with Eq. (2).

A configuration in Minkowsky space withn =1
would be associated with a violation of axial charge
conservation:

AQ°=2N. (12)

To calculate the amplitude for such an event di-
rectly in Minkowsky space one needs more under-
standing of the quantum mechanical tunneling from
one vacuum to the gauge-rotated vacuum. In
practice it is much easier to make use of the ex-
plicit solution in Euclidean space. Let us assume
then that all Green’s functions in Minkowsky space
can simply be obtained from the Euclidean ones
by analytic continuation.

Let us consider the vacuum-to-vacuum ampli-
tude in Euclidean space, first without, and then
with source insertions in the Lagrangian®:

(13)

where £ f* fixes the gauge and £#° is the corresponding Faddeev-Popov ghost term; ¢ is the ghost
field. We perform the perturbation expansion around those values of the fields where the exponent is
stationary. The solution of Eq. (3) is such a stationary point. Collective coordinates® must be intro-
duced for x, and ». The first will lead to energy-momentum conservation in an obvious way; the sec-
ond might at first sight lead to infinities at both ends of the scale, but there are natural cutoffs, as we

will see later.

The arguments that follow now must be considered as a summary of a series of mathematical manip-
ulations needed to compute the wanted amplitudes. Let us expand

Apa =A“acl +A"aqu’ £gauge+fermim+ghost =£{Acl} _AunlAqu_‘lpMzzp ~Q*M 4

+ higher orders in the quantum fields.

(14)

It will be very convenient® to use the so-called “background gauge”:

fix 1 cl ay2 ac,cl __ ac b,cl
LM =30, A2, DT 20,67 +g€ A,

(15)

Because we introduced collective coordinates, we may restrict the quantum fields to be orthogonal to
those values that generate pure translations or dilatations of the classical solution. The amplitude (in

the one-EGS sector) is now formally

€010y = fd*x, Jax (det)(detM,)” />(detM.,) (detM,) exp) £(Ad.

Here (detJ) is the Jacobian following from our
transition to collective coordinates. If the back-
ground gauge is used it turns out to be finite and
proportional to X!, From Eq. (6) it follows that
the exponent equals

exp(- 872/g2), (17)

which explains why we get results that are unob-
tainable through ordinary perturbation expansions
with respect to g2,

The other determinants are in principle ob-
tained by solving the equations

MA™=E A% My=Ep, Mp=Egp. (18)

(16)

[

Now M, and M, have some zero eigenvalues
that neatly cancel. But there are also solutions
to

Mgh=0, p=(1+72)"%2y, (19)
where « is a fixed tensor with Dirac and isospin
indices. There is one such solution for each of
the N flavors. They are chiral solutions, very
much like the fermion bound states described by
Jackiw and Rebbi’ in one and three spacelike di-
mensions (but stationary in time). These zero
eigenvalues are not canceled by anything, so
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detM,=0, and the amplitude (13) vanishes. I in-
terpret this result as being a consequence of Eq.
(12): We must not sandwich the functional inte-
gral expression between two vacuum states, be-
cause the initial and final chiral charges @° should
be different.

Let us now insert a source term ¥, °J,, %y}
into the Lagrangian, where J(x) may contain fla-
vor indices and y matrices, but must be gauge
invariant. Now the lowest eigenvalues will be-
come different from zero:

Mzw(i)s"'JSt(x)Zp(i)f =E,;y¥uys £=1,...,N.

Using lowest-order perturbation expansion we
find that

Ja*x 0y 0 60 =By [ ay* ¥
=E(i)6ij’ i,j=1,. .o ,N,

(20)

where ¥;°=¥,a,°, and §, is the zero-“energy”
solution for any flavor, and a;;,’ are coefficients.
Thus

det(M, +J) =115~ det [4,+7% (el
@)
x{JpoRpod?a}.

Substituting the known form of 9,, Eq. (19), we
find that Eq. (21) goes like

(21)

iI:Il(x,- —x,) 8 (x;)

for large distances, and only the 1 -y, part of J%
is selected out. We ask now for an effective ver-
tex that could mimic the same amplitude (neglect-
ing the finite size of the EGS) and we find

£t =Cg 8exp(- 812/g?) £’ +H.c., (22)

where £7 is a 2N fermion interaction that has the
chiral transformation properties of

d3t$8(1+75>wt

but the isospin indices are arranged in a more
general way. The factor

N
1T (xi - %) ©,
=1

is exactly reproduced by the 2N propagators that
connect the sources with the EGS (Fig. 1).

Note that the sources have to switch chirality.
This explains why the instanton gives AQ®=2N.
I have found that the constant in Eq. (22) can be
computed analytically to zeroth order in g. The
calculation is lengthy and will be discussed in a
separate publication.

10

J(xy)

0

J(x3)
FIG. 1. The ease of three flavors. The sources J

turn the axial charge @° into — @® for each flavor. The
amplitude goes like J°.

The integration over the collective coordinate
%oy in Eq. (16) simply implies that the effective
action is Eq. (22) integrated over space and time,
so that we get energy-momentum conservation,
The integration over A is finite if the Callan-
Symanzik 8 function for g is negative and if also
the ir divergence is cut off by the Higgs mecha-
nism.

A notable application is the case of the Wein-
berg-Salam SU(2)® U(1) model in an often cited
form. The leptons are eg, (V1% er), wtg, (V"
tz); and the quarks are

. uL" u ,d Cyr
R, ug'", (45, d;") (23)

r

uR ’ er; (u],” SLC)T

where 7 denotes red, yellow, or blue, and C de-
notes Cabibbo rotation. All currents that are
coupled to gauge fields are anomaly free, hence
the model is renormalizable. But the baryon and
lepton currents have anomalies. We find that one
Euclidean-gauge soliton gives

AE=AM=1,
Au +Ad€ =3, (24)
Au' +As€ =3,

where E is the electron number, M is the muon
number, and %, #’, d°, and s€ are the numbers
of the corresponding (Cabibbo rotated) quarks.
Thus, because of the Cabibbo rotation, a proton
and a neutron (two baryons equal six quarks) may
annihilate to form two antileptons, one of elec-
tron and one of muon type. )

The factors exp(- 1672/g2)=exp(- 47 x 137
X sin%6yy) in the cross sections and lifetimes will
make none of the predicted effects observable if
the Weinberg angle is not very small.

In a color gauge theory for strong interactions
with two massless quark triplets, Eq. (22) is an
effective four-fermion interaction with exactly
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the chiral quantum numbers of a mass term for
the n particle. Comparison with the actual value
of the 7 mass is not yet possible because of the
infrared divergences in that theory.

The author would like to thank S. Coleman,
R. Jackiw, S. L. Glashow, and all other physi-
cists of the Harvard theory group for discussions.

Note added.—In Eq. (22) the isospin indices
have been suppressed. The isospin structure of
this expression, however, is more complicated
than the compact notation suggests. There is al-
so a power of the coupling constant g in front of
the exponent. The full details will be published
soon.
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Microscopic crystalline monazite inclusions showing giant halo formation in biotite mi-
ca have been analyzed by the method of proton-induced x-ray emission. The observed
x-ray energy spectra are best explained by the presence of a number of superheavy ele-

ments.

Radiation damage induced by alpha-particle de-
cay of uranium and thorium isotopes and daughter
products can generate spherical halos that image
the known energies of the alpha groups when such
materials are contained in microscopic inclusions
in transparent materials such as mica.® While
intensive studies of giant and other halos in cer-
tain micas® suggest a chemical origin for some,

giant halos (GH) have been found which exhibit
three-dimensional structure. This implies a ra-
dioactive origin, in which case the halo radii
would require a energies up to about 14 MeV.

This work reports recent investigations of nor-
mal uranium/thorium halos and giant halos through
the use of ion-induced x-ray analysis with low-
energy proton beams.?"* The experiment was de-
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