
VOLUME $7, +UMBER I PHYSICAL REVIEW LETTERS 5 'JUz. v 1976

Symmetry Breaking through Bell-Jackiw Anomalies*

G. 't Hooftt
Department of Physics ~ Harvard University, Cambridge, Massachusetts 02138

{Received 22 March 1976)

In models of fermions coupled to gauge fields certain current-conservation laws are vio-
lated by Bell- Jackiw anomalies. In perturbation theory the total charge corresponding to
such currents seems to be still conserved, but here it is shown that nonperturbative ef-
fects can give rise to interactions that violate the charge conservation. One consequence
is baryon and lepton number nonconservation in V -A gauge theories with charm. Another
is the nonvanishing mass squared of the g.
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then the topological quantum number is

n = (g'/32~') fG„,'G„„'d'x,

with

a~ pv 2~ pvnacng

(2)

n is an integer for all field configurations in Eu-
clidean space that have the vacuum (or a gauge
transformation thereof) at the boundary. In Min-
kowsky space n would be i times an integer (if we
take d'x and e»„ to be real and A„B/Bx, imagi-
nary).

The solution with n = I in Euclidean space is

~,( ),1 2 1I,„v(x -xn)'
g (x-x,)'+Z'' (4)

Here, x, is free because of translation invariance
and ~ is a free scale parameter; g is a tensor
that maps antisymmetric representations of SO(4)
onto vectors of one of its two invariant subgroups

When one attempts to construct a realistic mod-
el of nature one is often confronted with the dif-
ficulty that most simple models have too much
symmetry. Many symmetries in nature are slight-
ly broken, which leads to, for instance, the lep-
ton and quark masses, and CI' violation. Here I
propose to consider a new source of symmetry
breaking: the Bell- Jackiw anomaly.

My starting point is the solution of classical
field equations given by Belavin et al. in four-
dimensional (4D) Euclidean gauge-field theories.
The solution is obtained from the vacuum by map-
ping SU(2) gauge transformations onto a large
sphere in Euclidean space. Taking the new,
gauge-rotated, vacuum as a boundary condition,
they obtain a nontrivial solution inside the sphere,
characterized by a topological quantum number.
If the Lagrangian is

SO(3):
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q,a„=-5,„(a,v =1,2, 3),
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Thus isospin is linked to one of the SO(3) sub-
groups of SO(4). The solution has

S =fZ(a") dax = S"/—g'. (6)

Since we have a 4D rotational symmetry, the so-
lution is not only localized in three-space, but al-
so instantaneous in time. I shall refer to such ob-
jects as "Euclidean-gauge solitons, "' EGS for
short.

There is a simple heuristic argument that ex-
plains why these solutions of the Euclidean field
equations are relevant for describing a tunneling
mechanism in real (Minkowsky) space-time, from
one vacuum state to a gauge-rotated vacuum (a
gauge rotation that cannot be obtained via a series
of infinitesimal gauge rotations). Consider an or-
dinary quantum mechanical system with a poten-
tial barrier V larger than the available energy E,
which I put equal to zero. Then the leading expo-
nential of the tunneling amplitude is exp(- Jpdx),
with

p /2nz=V-E.

This corresponds to the classical equations of
motion, except for a sign difference. Thus the
leading exponential is obtained by replacing in the
equations of motion t by it and computing the ac-
tion S for a path from one to the other vacuum.
[Note that both in Euclidean and in Minkowsky
space the gauge group is the compact group SU(2).]

Suppose now that we have in addition N mass-
less fermion doublets coupled to the gauge field:

E
g fet minn g qt D qt

t= j.
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where

Duifii' =8 ui)' —ai7, A ir'g'. (8)

I will eall the SU(2) index i "color" and the index
t =1,...,N "flavor. " The vector currents

Jq" =i g'yqg',

and the traceless part of the axial vector current

(10)

are all conserved without anomalies. Thus we
have the exact chiral flavor symmetry SU(N)~
SV(N)„ U(1). But the current

5 Q J srs

has an anomaly'

sq J„'= —i(Ng /16'')G„„'G„„'.

~q' =2N (12)

To calculate the amplitude for such an event di-
rectly in Minkowsky space one needs more under-
standing of the quantum mechanical tunneling from
one vacuum to the gauge-rotated vacuum. In
practice it is much easier to make use of the ex-
plicit solution in Euclidean space. Let us assume
then that all Green's functions in Minkowsky space
can simply be obtained from the Euclidean ones
by analytic continuation,

Let us consider the vacuum-to-vacuum ampli-
tude in Euclidean space, first without, and then
with source insertions in the Lagrangian4:

Let us now compare this with Eq. (2).
A configuration in Minkowsky space with n =1

would be associated with a violation of axial charge
conservation:

(0)0) = 1SA&if' Qy exp J (i'g'"g (A)+8'™~(A,g)+l', i (A)+gg""'(A, y))d'x, (13)

where C~'" fixes the gauge and g@'" is the corresponding Faddeev-Popov ghost term; cp is the ghost
field. We perform the perturbation expansion around those values of the fields where the exponent is
stationary. The solution of Eil. (2) is such a stationary point. Collective coordinates must be intro-
duced for x, and A. . The first will lead to energy-momentum conservation in an obvious way; the sec-
ond might at first sight lead to infinities at both ends of the scale, but there are natural cutoff s, as we
will see later.

The arguments that follow now must be considered as a summary of a series of mathematical manip-
ulations needed to compute the wanted amplitudes. Let us expand

A a A ac1+A aqu ggauga+fermicu+ghost ggcl} AquM Aqu
P P P 1 2 3

+ higher orders in the quantum fields.

It will be very convenient' to use the so-called "background gauge":

affix r
(D clA qa)a D ac cl

~ 6ac & A b, cl
2 p p y p p +g abc p

(14)

(16)

Because we introduced collective coordinates, we may restrict the quantum fields to be orthogonal to
those values that generate pure translations or dilatations of the classical solution. The amplitude (in
the one-EGS sector) is now formally

(0)0) = fd'x jdA(detJ)(d. etM, ) 'I'(detM, )(detM, ) exp JZ(A' )d'x.

Here (det J) is the Jacobian following from our
transition to collective coordinates. If the back-
ground gauge is used it turns out to be finite and
proportional to X '. From Eil. (6) it follows that
the exponent equals

exp(- 8m'/g'), (17)

M,Aq"=Z, Aq", M,q=Z, q, M,q =Z,y. (18)

which explains why we get results that are unob-
tainable through ordinary perturbation expansions
with respect to g'.

The other determinants are in principle ob-
tained by solving the equations

) Now M j axld ~3 have some zero eigenvalue s
that neatly cancel. But there are also solutions
to

Ma( = 0, g = (1+xa) +2u,

where u is a fixed tensor with Dirac and isospin
indices. There is one such solution for each of
the N flavors. They are chiral solutions, very
much like the fermion bound states described by
Jackiw and Rebbi' in one and three spacelike di-
mensions (but stationary in time). These zero
eigenvalues are not eaJ1celed by anything, so
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E(f') ~~ jy Egg 1P ~ ~ ~ PNP

where Pi;&'= P, aI, &', and (, is the zero-"energy"
solution for any Qavor, and a(;)' are coefficients.
Thus

det(M, +J) =TIE&,~-det fg, ~ J~( x)gP x
(~)

"
xo(,*(,d'x) '. (21)

Substituting the known form of P„Eq. (19), we
find that Eq. (21) goes like

P(x; -x,) 'J(x, )

for large distances, and only the 1-y, part of J~
is selected out. We ask now for an effective ver-
tex that could mimic the same amplitude (neglect-
ing the finite size of the EGS) and we find

8'"=Cg 'exp(- Sr'/g')Z~+H c. (22)

where Zf is a 2N fermion interaction that has the
chiral transformation properties of

de@ '(1+y, )g'

but the isospin indices are arranged in a more
general way. The factor

is exactly reproduced by the 2N propagators that
connect the sources with the EGS (Fig. 1).

Note that the sources have to switch chirality.
This explains why the instanton gives 4Q'=2¹
I have found that the constant in Eq. (22) can be
computed analytically to zeroth order in g. The
calculation is lengthy and will be discussed in a
separate publication.

detM, = 0, and the amplitude (13) vanishes. I in-
terpret this result as being a consequence of Eq.
(12): We must not sandwich the functional inte-
gral expression between two vacuum states, be-
cause the initial and final chiral charges Q' should
be different.

Let us now insert a source term (,. 'J&„&

into the Lagrangian, where J(x) may contain fla-
vor indices and y matrices, but must be gauge
invariant. Now the lowest eigenvalues will be-
come different from zero:

M,g(;)' +J~(x)(i;) =E,(;)g(;)', i = 1, . . .,N. (20)

Using lowest-order perturbation expansion we
find that

INSTANTON

Xo

J(x2)

FIG. 1. The case of three flavors. The sources J
turn the axial charge Q into —Q for each flavor. The
amplitude goes like Js.

&F.'=AM = I,
hu +Adc

AN'+6s =3,
(24)

where E is the electron number, M is the muon
number, and u, u', d, and s are the numbers
of the corresponding (Cabibbo rotated) quarks.
Thus, because of the Cabibbo rotation, a proton
and a neutron (two baryons equal six quarks) may
annihilate to form two antileptons, one of elec-
tron and one of muon type.

The factors exp(- 16m /g22) = exp(- 4m && 137
x sin 8~) in the cross sections and lifetimes will
make none of the predicted effects observable if
the Weinberg angle is not very small.

In a color gauge theory for strong interactions
with two massless quark triplets, Eq. (22) is an
effective four-fermion interaction with exactly

The integration over the collective coordinate
xo& in Eq. (16) simply implies that the effective
action is Eq. (22) integrated over space and time,
so that we get energy-momentum conservation.
The integration over X is finite if the Callan-
Symanzik P function for g is negative and if also
the ir divergence is cut off by the Higgs mecha-
nism.

A notable application is the case of the Wein-
berg-Salam SU(2) U(1) model in an often cited
form. The leptons are e„, (v~', e~), p„, (v~,
p, ~); and the quarks are

+B ~ +B ~ ( L& L
( )

QB ~ SB y (Q~ s 8~ )

where x denotes red, yellow, or blue, and C de-
notes Cabibbo rotation. All currents that are
coupled to gauge fields are anomaly free, hence
the model is renormalizable. But the baryon and
lepton currents have anomalies. We find that one
Euclidean-gauge soliton gives

10
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the chiral quantum numbers of a mass term for
the g particle. Comparison with the actual value
of the g mass is not yet possible because of the
infrared divergences in that theory.

The author would like to thank S. Coleman,
R. Jackiw, S. L. Glashow, and all other physi-
cists of the Harvard theory group for discussions.

Note added. —In Eq. (22) the isospin indices
have been suppressed. The isospin structure of
this expression, however, is more complicated
than the compact notation suggests. There is al-
so a power of the coupling constant g in front of
the exponent. The full details will be published
soon.
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Microscopic crystalline monazite inclusions showing giant halo formation in biotite mi-
ca have been analyzed by the method of proton-induced x-ray emission. The observed
x-ray energy spectra are best explained by the presence of a number of superheavy ele-
ments.

Radiation damage induced by alpha-particle de-
cay of uranium and thorium isotopes and daughter
products can generate spherical halos that image
the known energies of the alpha groups when such
materials are contained in microscopic inclusions
in transparent materials such as mica. ' While
intensive studies of giant and other halos in cer-
tain micas' suggest a chemical origin for some,

giant halos (GH) have been found which exhibit
three-dimensional structure. This implies a ra-
dioactive origin, in which case the halo radii
would require o. energies up to about 14 MeV.

This work reports recent investigations of nor-
mal uranium/thorium halos and giant halos through
the use of ion-induced x-ray analysis with low-
energy proton beams. ' ' The experiment was de-
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