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An exactly soluble model for a spin-glass phase transition is presented. It is essen-
tially a mean-field theory; but instead of "bond" randomness of the exchange interaction
(as used by other authors), a "site" randomness is assumed. This enables one to calcu-
late the "quenched" free energy without any uncertain mathematical procedures. Typical
results are given for a variety of interesting cases.

There is considerable experimental evidence'
that in certain magnetically dilute solid solutions
("spin-glasses" ) a new kind of phase transition
takes place. In this spin-glass phase, the mo-
ments are frozen into a disordered arrangement
with no or little long-range order present. There
is now a reasonable model for these transitions'
due to Edwards and Anderson. The Edwards-An-
derson model is essentially a mean-field approxi-
mation in which the exchange interaction between
different pairs of spins is treated as a random
variable. The model, in spite of its clear phys-
ical basis, suffers from the fact that in order to
solve it, one is reduced to rather complicated
and questionable mathematical procedures (the
"replication" methods).

In this note another mean-field type of model is
proposed which, I believe, is as reasonable phys-
ically as the Edwards-Anderson model, but still
exactly soluble. The model shows all the essen-
tial features of the experiment. As usual, we be-

gin with the following Hamiltonian'.

3C = —pQ J; sg s —jloH+s(,
t', j

whel e s =+ 1 gives the sp1n orientation of the ith
spin, J;, is the exchange interaction between the
ith and jth spins, 8 is the external magnetic field,
and p. o is the magnetic moment of each spin. (For
simplicity we are assuming an Ising model for the
spins, although this is not at all necessary. ) The
4&,- are random variables to be specified later.
The partition function &[4] will depend on all the
J&, 's and is given by

The corresponding free energy F[8] is

F[~1=-u 'I~[~].
For this problem, good physical arguments'

suggest that it is the "quenched" free energy
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which we observe. In other words, the free en-
ergy I' which we observe is given by

F =(F[J]), (4)

where the angular brackets mean averaging with
respect to the random variables which describe
the J;, Edwards and Anderson assume that the
different 4;,. are independent random variables,
Gaussianly distributed;we may call this "bond"
randomness. We shall assume that instead of
bond randomness, we have a kind of "site" ran-
domness. Formally we write

J;, = [J', + J,g;F„+J,($;+$,)],1

which only take on the values + 1.' The factor 1/N
insures mean-field behavior (if J, = J', =0 and J,
& 0, this gives the usual mean-field theory of fer-
romagnetism). The J', term gives a symmetric
distribution of 4;, values around the mean value
J,/N; and the J', term (which has interesting ex-
perimental consequences) makes the distribution
somewhat asymmetric. Because of the long-
range, very rapidly oscillating interaction be-
tween the spins of the Huderman-Kittel-Kasuya-
Yoshida type, the sites would be pra, ctically un-

correlated. Therefore the averaging process in-
dicated in (4) is taken to be

where N is the number of spins, J» 42, and J3
are constants, and the $, are random variables

Using (5) the partition function becomes

+'~(m„m2) expN[g(K, I, + K2m, 2+2K3m, m2) + hm, ],

where K, =PJ, (I = 1,2, 3), 0 =P pQ, m, =Q,s, /N, m, =Q,s~f„/N, and the summation over m, and I, is
over all possible values of m, and m, . Ii'„(m„m,) is the number of spin states for a set of given rn,
and pl2 ~

Obtaining W„ is an elementary problem in combinatorics. Call the number of $; which are equal to
+I, n+, and the number equal to —1, n . A little reflection yields

where N, ' is the number of sites with s; =+1 and $, =+1, N+ is the number of sites with s, =+1 and $;
= —1, N ' is the number of sites with s, = —1 and (, =+ 1, and N is the number of sites with s, = —1
and () =- 1~ Using these deflnltlonsq we find after an elementary calculation (X -=Q)$~/N)

N, += —'N(1+I, +m +z), N+= —'N(l-m, -m +Z), N = —'N(1+m, +m —z),

N -=-,'N(l-m, +m, -~), n, =-,'N(1+~), n =-.'N(i-~).

For large N, (8) becomes

W„(m „,m 2) = 2"exp'- —,
' [(1+m, + m, +X) ln(l + m, + m, +X) + (1 —rn, —I, +A ) ln(l —I,—m 2 +% )

+ (1 + I,—I,—A.) ln(l + m, —m 2
—X) + (1 + m, —m, —A.) ln(l —m, + m, —A.)]

+-.'[(1+~)in(1+X)+(1-X)ln(l-~)]}. (10)

Using (10) and (7), we see that Z has the form

Z= Q exp[Ng(m„m„z)],
m$ y

mph'

where g is a smooth function of m„m„and X independent of the size of the system (N). It is clear
from (ll) that, as usual, in order to find lnZ we need only take the maximum term of the summation.
That is

lnZ =N max [g(m~, m3, A,)].
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The coefficient of Ã will certainly be an N-independent smooth function of A.

F = ——P max'(m „m„~)]P„(~),N

where

1 N! Nt
2 n !n ! 2 [zN(1+X)]![zN(1—g)]! '

For large N, P„(A.) has an extremely sharp maximum at X =0,

P„(X)-exp(--,'Ny') (X«1).

(14)

Therefore any smooth function of X, when averaged over P„(X), only has an appreciable contribution
from the neighborhood of x =0. Thus

(16)F = ——max[ad(m„m„0)].
N

may m2

Writing m, = (a, +a, )/2 and m, = (a, —a, )/2, we can summarize our results for the free energy per spin

f as follows:

f = —=min[f (a„a,)],F
N

(17)

where

f (a„a,) = —,'fP '[(1+a,) ln(1+a, ) +(1 —a,)ln(1 —a, )+(1+a,) ln(1+a, )+(1 —a,) ln(1 —a, ) —4 ln2]

11 1 22 2 12 la2) ! (P(al a2) )
and

(18)

J„=-(J,+J,)+J'„J„=-,(J, +J,) -J„J„=—,'(J, J,).
A necessary condition for the minimum of f (a„a,) is that its first derivatives with respect to a, and

a, vanish, i.e. ,

(2P) ' ln[(1+a, )/(1 —a,)]=J»a, +J»a, + p, H,

(2p) ' ln[(1+a2)/(1 —a2)] =J»a, J+~ 2+p2, HO.

(19)

(20)

Of the various solutions of (19) and (20) (if there are several), the one which makes f (a„a,) smallest
must be taken. Call this solution (a,', a, '). Thus we have a system with two order parameters a,' and
a, ' or the corresponding m, ' = —,'(a, '+a, ') and m, ' = —,(a,' —a,'). m, ' is of course proportional to the mean
magnetic moment of the system; and it is the conventional order parameter for magnetic problems.
m2 is a new order parameter characteristic of the spin-glass. It is not the same as the order param-
eter used by other authors' when employing the replica method.

The complete discussion of (19) and (20) is quite complicated and shall be given elsewhere. (A par-
tial discussion already exists in the literature' in connection with the theory of ferrimagnetics )We.
shall limit ourselves to the case of no magnetic field and to the calculation of the magnetic susceptibil-
ity. Even with this limitation, the enumeration of possibilities is fairly tedious. I will therefore sim-
ply give some typical results.

(a) H = 0.—If J, +J, &0, J',J, -J,') 0, the original quadratic form [in (7), say] is negative definite.
The only solution of (19) and (20) is a, =a, = 0 and there is no phase transition.

(b) H = 0.—If both the conditions in (a) are not satisfied and J,v J, , there is always exactly one sec-
ond-order phase transition at T = T~,

k~Tc = —,(J,+J', ) +[—,(J, —J,)'+J,']'i'—= 1/Pc. (21)

For T )T~ the only solution is a, =a, =0. For T just less than T~, there is a nonzero solution a, =a, ',

780
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a, =a2',

3)T„'+J,')'i'))J„'+J')"'+J,) T —
T)

"'
2J3 +J,2 Tc (22)

0 0
2 (J 2 J 2)1/2 J 1 &Ji), we find

0 1 0
1 2 (J 2 J 2)l/2 ~J 1

1 J12 g 0
2 2 (J 2 J 2)1/2 J 1

(24)
and

li (T = T c ) = l/(T = Tc ) = k 2/(J2 -J,),

d)((T) k2

~C+ J2 Jl

(28)

(29)

In general, there is nonvanishing magnetic order
(m, 'g 0) and nonvanishing spin-glass order (m, '
230) for T&Tc. If J,=O, however, either m, '=0
or m, '=0; we get the former if J2&J, or the lat-
ter if J]&J2 We call the case J3:0 and J2&J1,
the "pure spin-glass. " This behavior persists
down to T = 0. If J,g 0, the behavior at T = 0 de-
pends on the signs and relative sizes of the pa-
rameters J„J21 and J,. If J2&~ JJ and J„ the
behavior as T approaches zero is simple: a,'
—1 and a2'- —1, the approach being exponential.
Therefore, even if J,g 0 the magnetic order pa-
rameter m1 0 and the spin-glass order param-
eter m2'- 1. That is, there will be a very char-
acteristic rise and fall of m, ' below the transi-
tion temperature.

As T decreases through T~ there is a jump
(b,C) in the heat capacity given by

gC =-'2~k, (J2'+J»')/(2J2'+J»'). (26)

(27)

This is the typical Curie-Weiss behavior. How-

ever, as we approach the pure spin-glass case
(J,&J, and J,-O), the coefficient of ~T —Tc~
approaches zero; and it would be very hard to de-
tect the Curie-Weiss behavior unless we were
very close to the transition temperature.

(e) For the pure spin-glass case (J, =0 and J,

(c) H = 0.—If Jl =J2, J12 = 0 and Eqs. (19) and
(20) decouple. The problem is then equivalent to
two independent ordinary mean-field problems.
If J» and J22 are both greater than zero, there
will be tuo second-order phase transitions which
look very much like ferromagnetic transitions,
but the order parameter m, ' will not be zero.

(d) Zero field sus-ceptibility. —Let )( be the sus-
ceptibility per spin in units of p. ,'/k2. Then if we
do not have the pure spin-glass case J,=0 and J,
)J1 we find near T~,

d)((T )
2

k,
(30)
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to mean-field theory, but as a result of this severe
limitation I am able to treat the general case com-
pletely.
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displaying the typical cusplike behavior of li which
is seen near the transition temperature for the
spin-glasses.
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We present the first complete theory of the effect of collisions between charge carriers
on the electrical resistivity of a simple degenerate semimetal. We find that (i) electron-
hole scattering can explain the anomalous T resistivity of stoichiometmc TiS2, (ii) elec-
tron-electron and hole-hole scattering do not contribute to p, and (iii) the theory of elec-
tron-hole scattering predicts that the resistix ity of nonstoichiometric TiS& should fall sig-
nificantly below T at high temperatures.

In a, recent Letter Thompson' reported that the
a- axis, temperature-dependent electrical resis-
tivity, p(T) —p(0), of the layered semimetallic
compound TiS, was proportional to T' from at
least 10 to 400 K. Thompson suggested that this
remarkable behavior was due to "general" elec-
tron-electron scattering which encompasses elec-
tron-electron (e-e), hole-hole (h-h), and elec-
tron-hole (e-h) processes In this .Letter we pre-
sent the first complete theory of the effect of col-
lisions between charge carriers on the electrical
resistivity of a simple degenerate semimetal. In
TiS, the electron and hole densities are sufficient-
ly small and the carrier pockets (assumed spher-
ical) are sufficiently isolated that all e-e, h-h,
and e-h scatterings conserve momentum. There-
fore e-e and h-h processes do not contribute to
p. For e-h scattering momentum conservation
does not imply current conservation; and we find
that this mechanism can explain the observed T'
resistivity. Furthermore, the theory of e-h scat-
tering suggests additional experiments to confirm
the validity of this explanation.

Specifically our theory predicts that a compen-
sated (stoichiometric) semimetal has a T' term
in the resistivity [Eq. (8)] for all T, as has been
found in TiS, . An extension of the theory predicts
that the resistivity of an uncompensated (nonstoi-
chiometric) semimetal, e.g. , Ti„„S„should
fall significantly below T' at high T, eventually
going linearly with temperature as a result of
phonon scattering. The particular behavior we
predict for Tip S2 is shown in Fig. 1, where we
plot the temperature-dependent resistivity versus
T' for different values of x. For stoichiometrzc
TiS„x=0, the solid curve including e-h and im-
purity scattering is pure T' and the dashed curve
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I IG. 1. Theoretical temperature-dependent electri-
cal resistivity of Ti&+„S& for different values of x. The
solid curves include electron-hole and impurity scat-
tering. The dashed curves illustrate the changes that
occur when phonon scattering is included.

including some phonon scattering shows only a.

slight deviation. Both are consistent with the da-
ta of Thompson. For nonstoichiometric TiS, our
predictions are quite different. At low T, p is
also proportional to T', but with a coefficient
that decreases with x. At higher T, however, the
curves fall far below T'. The solid curves be-
come constant at high T, while the dashed curve


