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Drude edges are observed in reflectance spectra and compared with the dc transport
measurements in the lamellar compounds C6„HN03 with n =1, 2, and 3. Both measure-
ments confirm the general metallic character of these materials, but the optical data are
inconsistent with a simple Drude model. We suggest that this is due either to a complex
background dielectric constant or to a multiple-carrier Fermi surface.

Graphite intercalation compounds consist of
one or more planes of hexagonally arrayed car-
bon atoms separated by monolayers of intercalat-
ed atoms or molecules. ' The number of contigu-
ous carbon planes is referred to as the stage of
the compound. Many donors (e.g. , alkali metals)
and acceptors (halogens and acid radicals) have
been successfully intercalated. A univer sal fea-
ture of all these compounds is a large increase
in the a-axis electrical conductivity, presumably
due to an increase in the free carrier density
which accompanies the transfer of charge be-
tween the graphite and intercalant layers. ' In
this Letter we report the first systematic study
of variations in Drude-like reflectance with the
intercalant concentration. The optical results
confirm the metallic character of these com-
pounds, but a comparison with the dc transport
measurements shows that these are not simple
Drude metals. Our results are similar to the
"tr ansmission windows" reported by Hennig, '
which could not be analyzed quantitatively be-
cause the thickness of the cleaved specimens was
unknown.

This Letter deals specifically with the first
three stages of the graphite-HNO, lamellar com-
pounds. The starting material was highly orient-
ed pyrolytic graphite, ' in which the spread in c
axes of individual crystallites is of order 1 and
the crystallite size is of order 11LLm. Individual
samples for the optical and transport experiments
were intercalated using methods developed by
Fuzellier. ' These consist of employing distilled

HNO, instead of red fuming HNO, which allows
one to obtain concentrations up to stage 1 without
further adjustment of chemistry. The samples
were characterized by x-ray, weight-uptake, e-
axis dilation, and chemical analyses. ' The re-
sults are all consistent with the chemical formu-
la C,„HNO„where n denotes the stage of the
compound, as previously determined by Ubbe-
lohde. ' The e axis repeat distance I, follows the
relation I, = 78+ .33(5n —l) A, also in agreement
with previous reports. "'

Figure 1 shows the reflectance spectra of fresh-
ly cleaved e surfaces for the fir st thr ee stages.
Unpolarized light at near-normal incidence was
used (i.e. , with the polarization perpendicular to
c). The stage 2 and 3 compounds were measured
at room temperature in a flow of N, gas, while
the stage 1 compound was immersed in carbon
tetrachloride at —20'C since it is unstable at
higher temperatures. ' The samples were x-

10 j
(

j j j j
t

j j j j
I

j

LLI

u05
L0

0
LLl

IX

0.5 1.0 1.5
PHOTON ENERGY (eVj

FIG. l. Reflectance spectra of stage 1, 2, and 3
graphite nitrate intercalation compounds.
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rayed before and after the measurement to insure
that no changes in composition had occurred.
The dominant effect in all three compounds is a
metallic edge, which we associate with the clas-
sical plasma of free carriers. The position of
this edge shifts monotonically to higher energy
with increasing HNO, concentration, supporting
the idea that charge transfer accompanying inter-
calation leads to an increase in the free carrier
density. The stage 2 and 3 compounds also ex-
hibit broad subsidiary minima at 0.5 and 0.6 eV,
respectively. The shape of these curves might
suggest a mixture of two stages, but the x-ray
analysis gave no evidence of a two-phase system.
The low-energy dips are also observed on speci-
mens freshly cleaved in a flow of inert gas. This,
plus the fact that the low-energy peak tracks with

stage, suggests an intrinsic phenomenon rather
than an extrinsic or surface effect. One possibil-
ity is the existence of interband transitions in a
narrow energy range, by analogy with the reflec-
tance spectrum of Al. ' Another possible mech-
anism is an O-H stretching mode internal to the
HNO, molecule, because such modes are typical-
ly found in this spectral region. The stage 1 spec-
trum could only be measured down to 0.6 eV be-
cause of the CC14 absorption.

The spectra were analyzed using the Drude ex-
pression for the complex dielectric constant.
These analyses were performed over a limited
range of energy which avoided the extra struc-
ture in stages 2 and 3. The results are present-
ed in Table I along with the dc conductivity val-
ues measured on standard four-point bridges.
Note that od, and o, , = u!~'~/4m differ by as much
as a factor of 17, immediately suggesting that
the Drude model is too simple to describe the me-
tallic reflectance. This is the main observation
of this Letter. The co~ values in Table I are rea-
sonable; assuming 0.25 free hole per HNO, mol-
ecule as suggested by Ubbelohde, ' we calculate
effective masses m*- (0.1-0.2)m„which lie with-
in the range of pure graphite' and a free electron

[(0.05-1.0)m, j. The scattering times 7. .. ob-
tained by fitting the reflectance data with the sim-
ple Drude model, are in the range (4-6)x 10 "
sec, independent of stage, as is apparent from
the equal slopes of the plasma edges in Fig. 1.
This result is somewhat surprising. Magneto-
resistance measurements on stages 2 and 3 in-
dicate mobilities of about 1000 cm'/V sec for
both compounds, which implies that 7.d, falls in
the range 2.5x10 "-5x10 "sec while m* lies
between values for pure graphite and a free car-
rier accordingly. Thus, v,pf is less than od, by
a factor of 5-100. It is clear that v, , is the
source of disagreement between od, and a,p, ; the
low value of 0, , is mainly due to the small 7, ,
derived from the Drude model.

We feel that the low value of T pt results from
an oversimplified model rather than an experimen-
tal limitation If 7 pt were limited by surface con-
tamination, one would expect a greater discrep-
ancy between o, , and ad, at higher intercalant con-
centrations because of the greater reactivity and
instability of the saturated compounds. Table I
indicates the opposite behavior; 0„, and crd, con-
verge as n approaches 1.

Improved agreement between optical and trans-
port results can be obtained by generalizing the
optical model. A frequency-dependent w could in
principle improve the agreement between v, , and

Od, ; however, this is normally a small correction
in simple metals and probably cannot account for
the factor-of-17 discrepancy at stage 3.

A possible explanation for the low value of 7 pt

may be the existence of a weak continuum of in-
terband transitions in the region of the reflec-
tance edge, the effect of which is to make e, com-
plex. We note first that in pure graphite e = 5

+i10 near 1 eV,"the interband strength coming
from narrow overlapping bands near the zone
edges. " The low interband threshold obscures
the screened Drude edge expected at 0.5 eV in
pure graphite. The observation of edges in the
intercalation compounds indicates that the inter-

TABLE I. Drude parameters and dc conductivity of stage 1, 2, and 3
compounds.

id), ~OP an't
Stage (eV) ~o (10 ' sec) (m~! ' cm ') (m&& ' cm ') ~d, /&„„,

2,8 10
4.3 12
5.5 15

5+1
5z 1
5+1

8
16
35

140 + 20
155+ 15

180

17
10
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band strength near l eV is greatly reduced, which
in very dilute compounds can be understood in
terms of a downward shift of E„out of the region
of overlapping bands such that the interband
threshold increases greatly. The Drude fits to
the stage 3 curve gave e, = 10. An equally good fit
can be obtained with e, = 10+i1, with the result
that 7 pt is increased by a factor of 4. Thus the
large difference between o, , and od, at n = 3 and
the convergence as n proceeds through 2 and 1
can be explained by a featureless residual inter-
band strength near the reflectance minimum
which decreases in magnitude as n approaches 1.
The resolution of this question must await an ex-
periment which yields E'] and 6'2 independently.

A second possibility is suggested by the ex-
tremely small Hall coefficient in the stage 1 do-
nor compound C,K,"which strongly implies a
complex Fermi surface with comparable densi-
ties of electrons and holes. " A two-carrier Fer-
mi surface would completely invalidate the Drude
analysis of the optical data presented in Table I.

The increase in e, with decreasing stage im-
plies a shift in the oscillator strength at ~& &u~/

A, from high to low &u with increasing HNO, con-
centration. For example, carbon-HNO, bonding
would be expected to influence the bound m-elec-
tron resonance at 7 eV." We are planning to ex-
plore this effect with uv reflectance.

In a previous work, "we assumed the applicabil-
ity of the simple Drude model to predict crd, from
+~ and 7

p&
in a new compound, graphite inter-

calated with SbF, +HF. The predicted Od, was
comparable to that of copper. Having shown
above that the simple Drude model does not nec-
essarily apply, there is no longer any basis for
that prediction. In fact, preliminary results by
Thompson, Falardeau, and Hanlon" show that
crd, for this new compound is -3 that of copper,
comparable to the HNO, compounds described
here.

In summary, the reflectance spectra confirm
the general metallic character of the graphite
compounds, but 0+, and od, cannot be reconciled
within a simple Drude model. This is in contrast
to the situation found in other synthetic metals
such as (SN), " and tetrathiafulvalene tetracyano-
quinodimethane" (TTF-TCNQ) in which (at least
at room temperature) o,~, and od, are in reason-
able agreement. The Drude analysis yields rea-
sonable u~~ values, but 7 pt «Td We find that
~~ increases with HNO, concentration as expect-
ed, the quantitative behavior suggesting that ei-
ther yn* or the fraction of a free hole per HNO,

molecule varies with stage. Several differences
are evident between the compounds and the par-
ent graphite. The effective masses appear to be
somewhat larger, although not greatly so. The
dc scattering times are reduced by at least a fac-
tor of 10. Given the possibility of multiple car-
rier groups, the reported quantities for these
parameters may have to be considered "effective"
values. The interband-transition strength in the
range 0-1 eV is greatly reduced, implying either
a totally new band structure or a shift in Fermi
energy within the graphite picture. The latter
view is the basis of a dilute-limit approach"
which is expected to be applicable only to com-
pounds with n~ 5. We do not expect a rigid-band
model to apply to the results presented here. The
difference between o,p, and Od, appears to be in-
trinsic and may be due either to interband transi-
tions overlapping the Drude edge or to a multiple-
carrier Fermi surface.
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The transition temperature T~ of the displacive phase transition in SnTe as a function
of the carrier concentration p* is determined by measurements of the resistance anom-

aly. The transition temperature T, decreases gradually with increasing p and vanishes
atP*- 1.3 x 10~' cm 3. The results are explained by the electron-TO-phonon interaction
model with an optical-deformation-potential constant of 10 eV.

The displacive phase transition in SnTe at low
temperatures has been studied by many workers
using various experimental methods. ' ' Qne of
the most interesting features of this phase tran-
sition is that it occurs in diatomic narrow-gap
semiconductors. This phase transition may be
understood with the aid of Kristoffel and Konsin's
theory of ferr oelectrie phase trans ition bas ed on
electron- TQ-phonon interaction. ' The transition
temperature T„determined by x-ray diffraction,
Raman scattering, and neutron scattering, as a
function of the nominal carrier concentration of
the samples, decreases abruptly at around p*
-1.5&10' cm '. ' Recently, it was found that the
electrical resistivity shows an anomalous in-
crease near the transition temperature. ' The
anomalous increase of the resistivity was under-
stood in terms of increasing carrier scattering
by the soft TQ phonon in the vicinity of T, deter-
mined by the neutron Bragg reflection in the same
crystal. ' This implies that the electron- TQ-pho-
non interaction affects the phase transition.

In order to clarify the role of the electron-TO-
phonon interaction in the phase-transition mech-
anism, T, was obtained systematically as a func-
tion of the carrier concentration. Measurements
of the electrical resistivity and Hall coefficient
as functions of temperature were made for p-type
SnTe single crystals with carrier concentrations
of (1.2-7.7) &&10'0 cm ' at 77 K. Samples with
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lower carrier concentrations were prepared from
solution-grown crystals while those with higher
carrier concentration were eut from horizontal
Bridgman-grown crystals. Examples of resis-
tivity-versus-temperature curves are shown for
the samples with various carrier concentrations
in Fig. I. Each curve has a kink whose position
shifts toward the lower-temperature side as car-
rier concentr ation increases. The transition
temperatures T, determined from the tempera-
ture of the kink are plotted versus the carrier
concentration in Fig. 2. Results reported earli-
er' ' are also shown in the same figure.

In order to gain an understanding of the carrier
concentration dependence of T„we applied the
same electron- TQ-phonon interaction model that
provided a good understanding of the resistivity
anomaly due to the phase transition. ' The TQ
phonon frequency is reduced by the electron-TQ-
phonon interaction and the lattice tends to be un-
stable. This reduction of the TQ phonon frequen-
cy becomes small when carrier concentration in-
creases, and consequently T, decreases. Under
the assumption of the same parabolic dispersion
for conduction and valence bands near the band
edges, the TQ phonon frequency renormalized
with the electron-TQ-phonon interaction can be
expressed as

4p AD' ~F p(E) dE
(2 )' 2M'' E +2E


