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Resolved critical point structures in Schottky-barrier electroreflectance spectra of
Ga 3d"-sp? conduction band transitions in the 20—-22-eV range provide a direct proof
that the LGc equivalent minima lie approximately 170+ 30 meV below the Xsc minima in
GaAs. This ordering, opposite to that assumed and apparently supported by previous
experiments, is in fact consistent with these experiments and provides natural explana-
tions for many formerly puzzling features of GaAs.

In 1960, Ehrenreich' reviewed the available ex-
perimental and theoretical evidence and proposed
that the lowest L€ local equivalent minima of the
conduction band of GaAs were far enough in ener-
gy above the lowest X,€ local equivalent minima
in this direct-gap material to be safely ignored
in such phenomena as the Gunn effect that depend
on the existence of higher indirect minima. Nu-
merous later experiments apparently provided
further confirmation of this hypothesis.? Yet
problems remain: The activation threshold of
0.38 eV determined from recent high-tempera-
ture® and high-pressure* Hall-effect and resis-
tivity data is significantly lower than the mea-
sured I';°-X,¢ separation of 0.43-0.48 eV deter-
mined by intra-conduction-band absorption.?:¢
Also, the activation energy of N isoelectronic
traps in the technologically important GaAs, P,_,
alloy series shows an anomalous increase in the
binding energy as the As fraction increases.”®

Here, we present the first direct measurement
of the relative energies of the I',°, L6, and X, ©
conduction-band minima in GaAs. Our synchro-
tron-radiation Schottky-barrier electroreflec-
tance (ER) spectra of the Ga 3d"-sp® core-con-
duction band transitions in the 20-22-eV range
show that the L,° minima actually lie 17030
meV below the X minima in GaAs. We find that
transport®*-* and photoemission®:'° data that appar-
ently supported the opposite ordering can be re-
interpreted to be entirely consistent with the L °
minima below the X,°. The new ordering also
provides a natural qualitative explanation for the
behavior of the binding energy of the N isoelec-
tronic trap, further suggesting that the L-sym-
metry components in the wave functions of the
trapped electrons will be important for lumines-
cence-efficiency calculations;'’ moreover, it
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shows that the photoemission studies® of trans-
port properties nominally at the X, minima have
actually been at the L.,°, which also implies that
the current descriptions of the operation of GaAs
Gunn oscillators'? will have to be re-examined.

Schottky-barrier ER measurements were per-
formed at the Synchrotron Radiation Center of
the Physical Sciences Laboratory of the Univer-
sity of Wisconsin on n-type GaAs single crystals
of (110) and (111) orientations with impurity con-
centrations of 1.5%10' ¢m™® Si and 4,0 X107 ¢m™2
Te, respectively. Details of the Schottky barri-
er®® and uv optical’ techniques are given else-
where. These measurements differed from our
previous work on GaAs'® because we used an an-
gle of incidence, ¢ =60° that optimized'® the sig-
nal-to-noise ratio and allowed the I'-L-X fine
structure to be resolved.

ER spectra for the relatively lightly and heavi-
ly doped crystals are shown at the top and bottom
of Fig. 1, respectively. The dominant features,
at 20.49 and 20.92 eV, are structures arising
from critical points between the Ga3d;,," and
Ga3d,,,” core levels and the X,© local minima of
the sp® conduction band. This assignment follows
directly from the line shape and relative-ampli-
tude comparisons with GaP,'*"!” where the X.©
minima are the absolute conduction-band minima
and the origin of the structure is unambiguous.

It is further supported by the exciton binding en-
ergies of Ga3d"-X,C transitions, which are of the
order of 100 meV for GaP!®:'7'!8 and GaSb!®+1°
—and, with this new assignment, for GaAs also.'®

The “anomalous” features in Fig. 1 are the
small spin-orbit-split structures near 20.32 and
20.76 eV, and the structure near 20 eV that ap-
pears only in the heavily doped sample. The only
possible Ga3d”-sp® conduction-band critical points
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FIG. 1. Schottky-barrier electroreflectance spectra
from Ga 3d" core levels to the lower sp® conduction
band for relatively lightly (top) and heavily (bottom)
doped single crystals of GaAs.

in the 20-22 eV spectral range are those associ-
ated with the T';°, L,°, and X,° minima since the
Ga3d” bands are flat to within 0.1 meV.?® Since
the I' .°- X, separation at 2 K is 0.462 eV,®?! the
20 eV feature in the lower spectrum clearly aris-
es from the Ga3d,,,"-I',® critical point near 20.02
eV. It appears only in the spectrum of the heavi-
ly doped sample, presumably because the selec-
tion rules are relaxed by the impurity fields in
this material. The remaining structures 170 £30
meV below Ga3d"-X.C are therefore the Ga3d"-
L. critical points. Chelikowsky has recently cal-
culated® the matrix elements for the Ga 3d" -sp?
conduction-band points at T';¢, L,°, X,°, and X.,°.
He found that the matrix element connecting the
L€ is finite but smaller than that connecting the
XS, in agreement with our results.

But numerous experiments have apparently
shown that the L,° minima are well above the X,°.
However, without exception, these results can
be reinterpreted to be consistent with the I' ;-
L°-X° ordering found here. We briefly consid-
er two major types of data concerning the trans-
port properties (as a function of pressure and
temperature) and photoemission; and we shall
present a more extended analysis elsewhere.

The apparent activation energy of 0.38 deter-
mined in careful high-temperature transport mea-
surements® actually falls about 0.1 eV above the
true indirect threshold, because at the reference
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FIG. 2. Variation of the I';®, X,©, and isoelectronic
N trap energies in GaAs;., P, alloys from Ref. 8, and
of the L€ from Schottky-barrier electroreflectance da-
ta for GaAs and GaP (this work). The variation (dashed
line) of the N trap energy calculated from Eq. (1) is al-
so shown.

(500 K) temperature, a nonnegligible fraction of
electrons have already transferred to L, and
X,©. Thus the activation energy, determined
from a semilogarithmic plot of the 600-700 K da-
ta, appears larger than the true value. The high-
pressure resistivity and Hall-coefficient data *
previously explained by a I';¢-X,€ model, also
can be fitted very well with the T';°-L,°-X,€ mod-
el, provided that the mobility of electrons in the
L€ minima is about 10% that of the electrons in
I',°. This is consistent with transferred-elec-
tron measurements (since GaAs Gunn oscillators
work) and also with the hydrostatic pressure mea-
surements on Gasb,*® which show a I';°/L,° mo-
bility ratio of 7.5 at room temperature. Photo-
emission measurements®!® show structures at
1.42, 1.72) 1.81, and 2.2 eV at room tempera-
ture, which is consistent with our interpretation
if the 1.72- and 1.81-€V structures are simply
reassigned to L€ and X,©, respectively. Since
the density of states is similar for both, this re-
assignment presents no essential difficulties.

The I',¢-L,°-X,€ ordering provides a natural
qualitative explanation of the unusual increase of
the binding energy of the N isoelectronic trap in
GaAs,., P, alloys with increasing As fraction, as
seen in Fig. 2. Here, data® are shown for the
variation of the I';¢ and X,€ threshold and N trap
energies as a function of x. Also shown are our
variation of the L.© threshold energy, using our
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L, values for GaAs and GaP and assuming a rea-
sonable bowing parameter (90% that of I';) for
LGC. To calculate the N energy E, we make use
of the large (approximately equal) densities of
states of L, and X,° relative to that of I,° and
the relatively small dispersion of these minima
with K to represent the conduction band in a two-
level model with energies E; (x) and E y(x), where
x is the P fraction of the alloy. Taking a Koster-
Slater representation® for the dominant, short-
range part of the isoelectronic trap potential®®
and considering only the off-diagonal coupling,
the two-band Hamiltonian becomes

E;(x)-Ey \%4
det =0, 1)

where E is the trap energy and V is the Koster-
Slater interaction strength. The form of Eq. (1)
is such that the trap energy reaches its maximum,
-V, when E; =E4. From this, we determine V
=0.18 eV and calculate E according to Eq. (1).
The model is oversimplified because it does not
include the effect of increasing strain around the
N site with an increasing As concentration, which
also acts to increase V.?® Nevertheless, the re-
sults, shown in Fig. 2, are in remarkable agree-
ment with the experiment and provide direct evi-
dence of the combined L and X nature of the wave
functions of the isoelectronic trap. Thus any
complete description of the properties of this
trap must include the effects of L,€.

Other direct results of the I',°-L°-X,° reor-
dering include the following: First, the energy
discrepancies between the transport,>* optical,>5
and photoemission® !° data are now completely re-
solved. Second, the results are in excellent
agreement with the predictions of recent nonlocal-
pseudopotential calculations [X,°~ L€ =150 meV
(Pandey and Phillips), 210 meV (Chelikowsky and
Cohen)]?” for GaAs, probably because the cores
of these elements are isoelectronic. Third, Gunn-
diode operation and the analysis of transport
properties by photoemission in GaAs are found
to involve the L, minima and not the X,°. These
results should allow the development of theories
to describe quantitatively various properties of
deep traps and the principle of operation in de-
vices involving GaAs and related materials.

One of us (D.E.A.) wishes to acknowledge many
useful conversations with H. C. Casey and to
thank N. Holonyak, Jr., for making available pre-
prints of his work prior to publication. We ex-
press our appreciation to E. M. Rowe and the
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Synchrotron Radiation Center staff, where the
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Drude edges are observed in reflectance spectra and compared with the de¢ transport
measurements in the lamellar compounds C4, HNO; withz =1, 2, and 3. Both measure-
ments confirm the general metallic character of these materials, but the optical data are
inconsistent with a simple Drude model. We suggest that this is due either to a complex
background dielectric constant or to a multiple-carrier Fermi surface.

Graphite intercalation compounds consist of
one or more planes of hexagonally arrayed car-
bon atoms separated by monolayers of intercalat-
ed atoms or molecules.! The number of contigu-
ous carbon planes is referred to as the stage of
the compound. Many donors (e.g., alkali metals)
and acceptors (halogens and acid radicals) have
been successfully intercalated. A universal fea-
ture of all these compounds is a large increase
in the a-axis electrical conductivity, presumably
due to an increase in the free carrier density
which accompanies the transfer of charge be-
tween the graphite and intercalant layers.? In
this Letter we report the first systematic study
of variations in Drude-like reflectance with the
intercalant concentration. The optical results
confirm the metallic character of these com-
pounds, but a comparison with the dc transport
measurements shows that these are not simple
Drude metals. Our results are similar to the
“transmission windows” reported by Hennig,®
which could not be analyzed quantitatively be-
cause the thickness of the cleaved specimens was
unknown.

This Letter deals specifically with the first
three stages of the graphite-HNO, lamellar com-
pounds. The starting material was highly orient-
ed pyrolytic graphite,* in which the spread inc
axes of individual crystallites is of order 1 and
the crystallite size is of order 1um. Individual
samples for the optical and transport experiments
were intercalated using methods developed by
Fuzellier.® These consist of employing distilled

HNO, instead of red fuming HNO, which allows
one to obtain concentrations up to stage 1 without
further adjustment of chemistry. The samples
were characterized by x-ray, weight-uptake, c-
axis dilation, and chemical analyses.® The re-
sults are all consistent with the chemical formu-
la C;, HNO,, where n denotes the stage of the
compound, as previously determined by Ubbe-
lohde.” The ¢ axis repeat distance I, follows the
relation I,=7.8+3.35(n — 1) A, also in agreement
with previous reports.>”

Figure 1 shows the reflectance spectra of fresh-
ly cleaved ¢ surfaces for the first three stages.
Unpolarized light at near-normal incidence was
used (i.e., with the polarization perpendicular to
€). The stage 2 and 3 compounds were measured
at room temperature in a flow of N, gas, while
the stage 1 compound was immersed in carbon
tetrachloride at - 20°C since it is unstable at
higher temperatures.® The samples were x-
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FIG. 1. Reflectance spectra of stage 1, 2, and 3
graphite nitrate intercalation compounds.
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