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trostatic potential of the converted wave. A cen-
ter probe interferogram is shown at the bottom
of Fig. 3 in parallel with the plasma absorption.
In agreement with the resonance conditions, the
absorption displays twice as many peaks as the
potential at the plasma center. Various center
probe interferograms are shown in Fig. 4. Note
that resonances appear also for u &2Q, . Simulta-
neously, at a fixed magnetic field we measured
with a movable probe the spatial interference
corresponding to the wave. Various examples
are given in Fig. 5. Short-wavelength waves are
observed and their dispersion was measured,
plotted in Fig. 5(b), and found to correspond to
ion Bernstein waves. The fact that electrostatic
waves are observed in the plasma core when v
&20, (see curves II and III in Fig. 5) is a conse-
quence of the reflection of the outgoing converted
wave in the low-density region. We observe in

Fig. 4 an attenuation after reflection of the wave
as compared to direct propagation when cu (2Q,
The attenuation explains why no resonance is ob-
served for the plasma absorption when ~&20;.
The attenuation itself can be explained as due to
collisions during the wave-amplitude swelling at
the reflection point and/or due to diffusion on
drift wave turbulence, which is always present in
the plasma periphery.

It is concluded that the present experiment
gives clear experimental evidence of electromag-
netic to electrostatic mode conversion at the low-
er hybrid layer. A second new observation is
that, when the wave frequency is near a higher
ion gyroharmonic (e -nQ;; n = 3, 4, . . . ), the con-
verted wave is observed to be reflected back to
the high-density region of the plasma.
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We show that very dilute concentrations of dipole impurities distributed in alkali hal-
ides (for example, OH impurities in KCl) undergo a phase transition provided that the
average impurity-impurity interaction is greater than the tunnel-splitting energy of a
single dipole. This theory predicts a temperature-dependent cusp in the dielectric con-
stant. The polarization in the absence of an applied field is predicted to be zero even be-
low the transition temperature.

Dilute concentrations of OH impurities distrib-
uted in alkali halides were found by Kuhn and Luty'
to form dipoles with six well-defined discrete ori-
entations. A single dipole tunnels between the dif-
ferent orientations; the tunneling states have been
examined by Bauer and Salzman, 2 Gomez, Bowen,
and Krumhansl, ' and Shore. ~ The calculations
show' ' that the degeneracy of the multiorienta-
tional states is removed by the tunneling matrix
element and that the various levels are split into
their respective tunneling states. Similar tunnel-

ing properties are observed for other impurities
(such as CN and Li+) dissolved in alkali halides. '

The question of whether the tunneling dipoles at
a very low impurity concentration c undergo a
phase transition has not been answered until now.
It is, however, expected that two effects will tend
to inhibit the phase transition. These are (1) tun-
neling, which tends to disorient the dipoles„and
(2) the random distribution of the dipole impuri-
ties at low concentrations c (10 ' «c «5 &&10 2 in
this work), which will introduce large fluctuations
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in the random dipolar internal fields, thus reduc-
ing the tendency for a phase transition.

The purpose of this Letter is to examine the
existence of a phase transition in the randomly
distributed tunneling dipoles, using the mean-
random-molecular-field (MRF) approximation. '
We show the following: (a) The dipoles undergo a
new kind of phase transition, provided the aver-
age magnitude of the dipole fields q, (0) evaluated
at temperature T =0 is greater than the tunneling
matrix element b. (b) In this transition, the aver-
a.ge dipole moment (or polarization) for the sys-
tem vanishes; however, the magnitude of the di-
polar random order parameter m becomes non-
zero below a well-defined transition temperature
T, . (c) The dielectric susceptibility )t is contin-
uous; however, it has a discontinuous derivative
(cusp) at T, . (d) The behavior of )t nea. r the
transition temperature is given in terms of the
moments of the probability of the distribution
f(E) of the random internal fields E More . spe-
cifically we find, for a specific case, that T, ~c,
where u~0. 66 for lg&c &5$. Finally, it is sug-
gested that previous measurements" of the sus-
ceptibility were performed in sufficiently large
externally applied fields that they suppressed the
cusp predicted by the present theory.

As the impurity concentration c goes to zero,
we can neglect the interactions between the im-
purities. However, as c is increased, the dipole-
dipole interactions between the impurities be-
come important. The dipole Hamiltonian KD is

X =Q, [p; u„-s(p, r, ,)(u, r, , )], (1)
i,J ri, 'Cm

where r;, is the distance between the dipoles p. ;
and p, , located at sites i and j, r;, is a unit vector
in the direction of r... a is the strength of the di-
pole-dipole interaction including the effective
field corrections, and e is the dielectric con-
stant of the host material.

The effect of the dipole-dipole interaction was
studied theoretically by a number of investiga-
tors and experimentally by Kanzig, Hart, and
Roberts' and by Fiory. ' More recently Klein,
Held, and Zuroff' derived the probability distribu-
tion f(E}of the dipolar internal fields E in the
MRF approximation for the case when (1) the dis-
tance of closest approach of the dipoles is not lim-
ited by a near-neighbor interaction, but is al-
lowed to approach zero, and (2) tunneling effects
are completely neglected. This MRF approxima-
tion allows a self-consistent derivation of f(E)
from the Hamiltonian given in Eq. (1).

The derivations of the behavior of the six-ori-
entational dipoles of KCl-OH near the transition
region becomes somewhat involved algebraically.
In order to simplify our presentation we show,
instead, the derivation for a model in which the
dipole is allowed to have two orientations only,
with a tunneling matrix element 6 connecting the
up and down states, with a field E~ in the z direc-
tion, where E~=E, +E, with E, the external and
E the internal molecular field. Our step-by-step
derivation for the two- and six-orientational di-
poles is similar, except that the final result for
the susceptibility g near T, will be given in
terms of a simple function )t,(T) which differs
for the two cases, thus giving differing transition
temperatures. At the end of our derivation, we
give the result for the six-orientational case as
well.

The energy levels for the two-orientational di-
poles are obtained by diagonalizing a two-by-two
matrix as in the work of Shore. ' We obtain for
the two energy levels (letting p. =1) e„=a(Er'
+b')'~'. The partition function Z for a single di-
pole is Z = 2coshP(Er'+ b'}'~', and the polariza-
tion P is defined by P = & InZ/&(PE, ) Thus.

P(E r P) =
( 2 2) yg2 tanhP(b +E )E,'+ e' "' (2)

where f(x) = f0*[(1-cost)/t ] dt, c is the impurity
concentration, no is the number of sites per unit
cell, b =a/e„, and

m = f Q(E) (P(E) ( dE, (3b)

with P(E) given by Eq. (2) and the parallel bars
indicating absolute values.

Because the positions of the dipoles are ran-
domly distributed, the internal dipolar field is a
random variable as was found in Ref. 6, where
the probability distribution f(E) of the random
vector fields E was derived. The work of Ref. 6
considers the case when tunneling effects are
neglected and the distance of closest approach
between the impurities is allowed to go to zero.
We have rederived the results of Ref. 6 for the
case when the distance of closest approach be-
tween the impurities is limited to a near-neigh-
bor distance r„„and included tunneling effects.
For the two-orientational dipoles the self-con-
sistent probability distribution f(E) for the z com-
ponent (i.e. , two-orientational) of the field E is

f(E) =(vbn, m) 'f cosx (E/bn, m)

x exp[-(4w/3)cxf(x)] dx, (2a)
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We remark that m given by Eq. (3b) appears as
a parameter in Eq. (3a). Thus Eq. (3a) is an in-
tegral equation for the probability distribution of
the field f(E). We also note that E on the right-
hand side of Eq. (3a) is divided by m; thus the
width of the probability distribution will be pro-
portional to m. m enters naturally into our self-
consistent solutions; however, it will become
clear later on that the dipolar random order pa-
rameter m defined by Eq. (3b) is really an order
parameter.

Examining Eq. (3a) for large and small fields,
we have

and

x,(P, )n (o) =1

tanhP, 5 = 6/q, (0).

(ioa.)

(10b)

For 5~ q, (0) there is no solution, whereas when

5«q, (0) we have

T, = q, (0}{I --'. [6/q, (0) ] 'j.

Examining Eq. (9) we find that m =0 for very
high T and that m has a nonzero solution below
the temperature T, = P, ' (with k z = 1), y, (P) q, (0)
= 1. Thus,

y(E) =m 'Z, /(Z, '+E'), E «bm,

f(E) =(2nd, ')"'exp(-E'/6, '), E»bm,

The general solution to Eqs. (10) is

26
ln[(1+x) /(1 -x) ]

(i2)

where 6, = 6,(0)m and 62= 6,(0)m, where b, ,(0)
= 2v'an, c/3e and 6,(0) = (2v/3)'"an, c'"/e . The
results of Eqs. (3) and (4) are similar to those
obtained by Riess and Klein' for the spin-glass
problem. "

For very high temperatures a solution to Eq.
(3a) and (4) is m -0; and since the width of the
distribution is proportional to m, the width goes
to zero as m -0 and f(E)- b(E), where 5(E) is
the Dirac 5 function.

In order to examine our equation for a possible
phase transition we expand P(Er) in Eq. (2) in a
power series in small Er for high T [this is val-
id since for high T, f(E) = 5(E) and only very
small fields contribute to the evaluation of m in

Eq. (4)] and substitute the result into Eq. (4).
Expanding Eq. (2) for small Er gives rl, (0) ~ c, (i3)

with x = 5/q, (0).
Since q, (0) is the average magnitude of the in-

ternal field at T= 0; q, (0) will decrease as the
impurity concentration decreases; and below a
certain concentration c, there will be no phase
transition. To get a feeling for the concentration
dependence of q,(0), we note that q, (0) must be a
function of the parameters 4, and L, entering
f(E). Since for E»am, f(E) is characterized by
the width 4,(0) ~ c'~' and for E «am, f (E) is char-
acterized by the width b, ,(0) ~ c, we expect q, (0)
~c, with 0.5&u&1. We calculated g,(0} with a
computer using the analytic expression for f(E)
given in Eq. (3a). We find that for the two-ori-
entationa, l dipoles and 6 «7},(0)

P = X,(P)E, X,(P)E,',-

where

(5)
with u =0.66 for 1$&c &5Q. Equation (13) is also
the result obtained for spin-glasses. "

For T just below T, we obta, in from Eq. (9)

X,(P) = tanh(P5)/5, (6) x,(P) q, (0) -1
m(T)= ' ()' ()——,TxT, . (14)

and y, = (tanhP5 —Pb sech'Pb)/26'.
Let

(7)

where g„ is the nth moment of the distribution
function f(E). It directly follows from Eq. (3a)
that

(6)q„= rl„(0)m",

m = y, (P)ri, (0)m —lf,(P)q, (0)m'+O(m'). (9)

where q„(0} is the nth moment of the distribution
function evaluated at T = 0.

Substit ting Eq. (5) into Eq. (4) and integrating
gives for high T

Substituting the value of }t,(P} we find that for
sufficiently large q,(0) [q,(0) & 6] m(T) is propor-
tional to (T, -T}'~' near T, . Thus m becomes
nonzero below T = T, . In our derivation, the lo-
cal internal field experienced by a dipole is zero
for T & T, and becomes nonzero for T & T, . How
does one measure the onset of order in an experi-
ment'7 One method which comes to mind is an
experiment analogous to the p.-meson depolariza-
tion performed by Murnick, Fiory, and Koes-
sler. " The indirect result of the ordering upon
the susceptibility g is discussed below.

We next obtain the polarization and susceptibil-
ity of N~ dipoles. Since f(E) is symmetric in E,
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we immediately obtain that P(p) equals jf(E)P(E,
P) dE =0 for all T, provided the external field is
zero.

x near T, is obtained by differentiating P(Er,
0) with respect to E„ then letting E, -0, we have

x =&,Jf(E)[x,(a) -3x,(a)E'] dE

=lV. l X,(&) -3X,(tl) n, (0)m']

For T&T, , m=0, and Eq. (15) gives

x =lv& x,(J3),

and

(15)

(16)

P + 2 1 X P q O

q, 0

(17)

Using the fact that 1 —X,(P)q, (0) ~ T, Tnear—T,
we obtain from Eq. (17) that X is continuous at T
= T„but there is a discontinuous derivative (cusp)
in X at T= T, . For the case g,(0)»5, we have
that X(T, ) =Nd/T, ~c' "~c'" for lg&c &5/o.

So far we have considered the two-orientational
dipoles. For OH in KCl (six orientations) Equa-
tions (16) and (17) still hold, except that 2X, —6X„
where the subscript on the lower left indicates
the number of orientations, and

e -286 4e "386
6Xy. 3~ 1 +3e -286 2 -g 8&+ 8 + e (18)

with the single dipole tunneling energy being 5/2.
From Eqs. (18) and (10a) we obtain

35
in[(A+B)' '+(A —B)'~]

where A=(2+y)/(1 —y), B=(1+ (I2+y) /(1-y)]' ]"'
and y =35/q, (0). For this case we have a nonzero
transition temperature provided q, (0) & 35. For 5

«q, (0), we obtain T, = q, (0)/3 instead of T, = q, (0)
for the two-orientational case. The c dependence
of the six-orientational q, (0) still remains to be
calculated. However an examination of the results
for the first moment of the distribution function
for the vector field E derived in Ref. 6 shows that
the value of q, (0) ca,n only depend upon h, (0) and

A, (0) given in Eq. (3). Thus an equation of the
form given by Eq. (13) will still hold, with 0.5

&a. &1.
Kanzig, Hart, and Roberts' and Fiory' meas-

ured the low-temperature dielectric constant of
dipole impurities in alkali halides and detected
no cusps in the susceptibility. We suggest that
the cusps were absent because the polarization
was measured in relatively large applied fields

which suppressed the cusp in an analogous fash-
ion to that observed in spin-glasses" when a
large magnetic field is applied to the system. In
order to observe the cusp Eo would have to be
very close to zero. By comparing the dipole sys-
tem to the spin-glass system, we estimate that
E, has to be of the order of 100 V/cm or less.

Finally we estimate the minumum concentration
necessary to observe the cusps in OH in KCl.
Using the maximum in the susceptibility observed
by Kanzig, Hart, and Roberts' the strength of the
interaction can be obtained from Eq. (3-11) of
Ref. 6. From this we estimate that the value of
c necessary to observe the cusp is c &0.05$.

One of us (M.W. K.) wishes to thank Professor
Joel L. Lebowitz for many helpful discussions on
the random dipole problem. We also wish to
thank Professor M. Luban for some suggestions.

~Part of this work supported by U. S. Air Force Office
of Research Grant No. 73-2430B.

V. Kuhn and F. LGty, Solid State Commun. 2, 281
(1964).

M. E. Bauer and W. R. Saltzman, Phys. Rev. 178,
1440 (1969).

M. Gomez, S. P. Bowen, and J. A. Krumhansl, Phys.
Rev. 153, 1009 (1967) .

H. B. Shore, Phys. Rev. 151, 570 (1966).
5V. Narayanamurty and R. O. Pohl, Rev. Mod. Phys.

42, 201 (1970); W. E. Bron and R. W. Dreyfus, Phys.
Rev. 168, 304 (1967); G. Feher, I. W. Shepherd, and
H. B. Shore, Phys. Rev. Lett. 16, 500, 1187 (1966);
F. LQty, Phys. Rev. B 10, 8667 (1974); S. Kapphan and
F. LGty, J. Phys. Chem. Solids 34, 969 (1978), and
Phys. Rev. B 6, 1537 (1972); P. P. Perissini, J. P.
Harrison, and R. O. Pohl, Phys. Rev. 182, 989 (1969).

M. W. Klein, C. Held, and E. Zuroff, Phys. Rev. B
18, 8576 (1976).

W. Kanzig, H. R. Hart, and S. Roberts, Phys. Rev.
Lett. 18, 543 (1964).

8A. T. Fiory, Phys. Rev. B 4, 614 (1971).
R. Brout, Phys. Rev. Lett. 14, 176 (1965); W. Zer-

nik, Phys. Rev. 189, A1010 (1965); M. W. Klein, Phys.
Rev. 141, 489 (1966); W. N. Lawless, Phys. Konden.
Mater. 5, 100 (1966); W. N. Lawless, J ~ Phys. Chem.
Solids BO, 1161 (1969).

I. Riess and M. W. Klein, to be published.
J. A. Mydosh, in Magnetism and Magnetic Materi-

als~974, AIP Conference Proceedings No. 24, edited
by C. D. Graham, Jr. , J.J. Rhyne, and G. H. Lander
(American Institute of Physics, New York, 1975),
p. 181; V. Conella and J. A. Mydosh, Phys. Rev. B 6,
4220 (1972).

D. E. Murnick, A. T. Fiory, and W. J. Koessler,
Phys. Rev. Lett. 86, 100 (1976).

759


