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It is shown that an appropriately defined magnetization has a zero thermal average
above a critical temperature and a nonzero average below it for a specific lattice Hamil-
tonian with three-spin interactions in two or more dimensions. This work implies the ex-
istence of a phase transition in Reggeon field theory.

Lattice models for phase transitions have been very extensively studied in the last five decades. The
Ising model provided an excellent laboratory for these studies; and it was first shown by Peierls that
the Ising model in two or more dimensions has a phase transition at sufficiently low temperatures. '
His argument was improved mathematically and somewhat generalized later, but no subsequent inves-
tigation went beyond pair interactions. "

I shall prove the existence of a phase transition on a classical square-lattice spin system defined by
the Hamiltonian

NZ I A„(-s) + &„(s). —C„(s) -D„,(s) l,

where g is defined to be positive. The system is
not symmetric in the first and second labels;
their corresponding axes will be referred to as
the time and space axes, respectively. The sym-
metries of the system are ST (combined spin and
time reversal), P (space inversion), A, and A„
(timelike and spacelike transitions, respectively,
by one unit).

A lattice spin system similar to the one defined
by (1) was shown to be equivalent to Reggeon field
theory (RFT)' near the critical point. ' However,
that lattice model, as derived by Cardy and Sug-
ar, had two spatial dimensions and an additional
nearest-neighbor pair interaction. ' The exten-
sion of the present results to two spatial dimen-
sions is trivial; the present model is only dis-
cussed for reasons of simplicity. The pair inter-
action is probably irrelevant in the determination
of the critical properties of the system; and the
critical value of the corresponding coupling con-

stant may well be zero. '
H has infinitely many ground states on an infi-

nite lattice and a (2'x 3)-fold degenerate ground
state on a torus with 3i rows and an even number
of columns. This can be seen by considering the
contribution of the internal interaction energy of
a block of 2&&2 spins. It is zero for the configura-
tions,"„,', and ', ; —2g, for, ,", and —4g, for

All other configurations can be obtained by
applying P (unchanged contribution), or S or T
(contribution changes sign). A ground state
should have a maximal number of blocks with
contribution —4g; and the rest, with —2g. The
only type of configuration satisfying this con-
straint is the one with alternating rows of up,
down, and alternating spins. Spacelike shifts of
individual rows of alternating spins and timelike
shifts of the whole configuration generate a vari-
ety of ground states. The ground-state energy
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per site in the thermodynamic limit (or on the fi-
mte torus) is e= E, ,/&= —Bg/3, or & = —16g/3 tn
two spatial dimensions.

I define a generalized magnetization, 3) as

M = Q(~ s„,), RI= N,

where the plus sign is chosen if k=3n+1 ox' if k
= 3@ and i= 2m+1, mhere m and n are positive in-
tegers, and the negative sign, otherwise. The in-
finite lattice or toroidal thermal average of M is
zero since (I+A, +A, ')(I+A„.)»=0, There is a
ground state I', ', such that MI', ' = NI, '. All other
ground states hRvlng x'oms of positive a.nd negR-
tive spins identical with I'o mill be called type 1
(I'). Ground states of type 2 (I"') and type 3 (I')

! (»)!&2(IC+ f)Q j(24X)', (4)

where 2(K+ I)j is the area of the boundary region,
while 24' is an upper bound on the numbex' of jth
order lattice diagrams' that can be drawn from a
single site, since twelve different interaction
terms can be attached to each site and each new

interaction term creates two new spin sites. The
counting includes overlapping disconnected dia-
grRIQS Rs well,

The thermodynamic limit of the magnetization
per site is zero if G «tanh '(,-', ) = G„since then
the series in (4) converges and (K+ I)/EI disap-
pears if E, /-~.

I prove nom the presence of magnetization at
lom tempexature. The lattice can be divided into
regions of three different types, A, k= 1, 2, Rnd

3 (inside which the spins belong to ground states
I', for every configuration). The boundaries of
neighboring regions are not defined everymhere
uniquely; some individual spins ean be joined to
either region at the boundaries. I shall make
use of this arbitrariness in the course of the
pl oof,

The boundary conditions imply that the ground-
state region Ao' completely surrounds the bounded
(maybe multiply connected) regions, A„, that are

E,I
C(s) = g f [I+XA„,(s)] [I+X@„(s)][I -XC„(s)]

with X= tanhG.
Because of translation invarianee the contribu-

tion of an individual spin in M to the coefficient
of X' in Eq. (3) disappears if the distance of that
spin to the boundaxy of the lattice is larger than

j. The contribution of spins near the boundary
can be estimated to give

[1 —xD„(s)J j,

themselves unions of one or more regions of dif-
ferent types, In what follows, I shall denote these
regions mith B. The first thing me need is to have
a lomer bound on the contribution of R to AE, the
excitation energy of the given configuration. Such
a lower bound is given by the following theorem:
Let the total length of the vertical and horizonta, l
boundaries of R be V and B, respectively. Then
Ah~, the contribution of this region to the exci-
t t gy„ t' f'

AE~ ~ BgV/3, hE~ = BgH/3

The phrase length always refers to that of the
shorter boundary if, because of the above men-
tioned arbitrariness, the boundaries ean be
changed and no intersection of boundaries is in-
volved. The detailed proof of this theorem mill
be given elsewhere. ' The proof is based on the
observation that a block of four rows and tmo

neighboring columns of spins has exactly a. con-
tribution of —Bg to the total energy in R ground-
state configuration. The proof proceeds through
the investigation of the contribution of pairs of
columns and groups of four rows (intersecting E)
to AE. The length of a very simple type of bound-
ary (the only one, represented by an open line)
that. intersects an alternating rom Rnd merely
changes its phase (two down or up spins side by
side) can be included in V in Eq. (5).

A direct consequence of the theorem is the in-
equality

E~ =4gB/3, (B)

are obtained from those of type I by applying A,
Rnd A, ', respectively.

I intend to show that there are numbers 60 and

G, such that the thermodynamic limit of (»)/R on
a rectangular lattice is zero if G =g/kv'&G, and
different from zero if C' & 6,. The boundary con-
ditions on the E ~ I rectangular lattice are the fol-
lowing: All spins at the boundary give positive
contributions to M. I shall then say that they be-
long to I'0'.

First, I prove the absence of magnetization at
high temperature, The thermal average of the
magnetization ean be written as'

(3)

where the summation goes over all admissible
conf lguratlons Rnd
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where B= V+H is the tota. l length of the boundary.
We can get a lower bound on m /N, the eigen-

value of M/N on a. configuration a, as follows:

m "/N = 1 —Q~T(R)RXR "/N,

where T(R) is the area of a region R, while X„
is 1 if the region 8 appears in configuration e
and 0 otherwise. The summation extends over
all possible regions R. The thermal average of
Eq. (7) contains (X„},the probability that a ran-
dom configuration contains R.

The boundary of A may be disconnected. Re-
gions for which the connected part of the bound-
ary, 8, that contains the outer boundary is 8,
will be denoted by R(BO). We can give an upper
bound on the expectation value of the sum in Eq.
(7) as follows:

S = Q,r(R)(X„)
=Q, 2'(R(B,))n/d

T(R(B,)) exp[ —PE(B,)/2],

where the summation over 8, mea, ns a, summation
over all possible connected boundaries Bo; n

=5~'exp(- pE), a sum over configurations contain-
ing one of the regions R(B,); and d=Qexp(- pE),
a sum over every configuration. E(B,) is the ex-
citation energy, generated by Bo only. Since the
equality in Eq. (8) is trivial I shall only show the
validity of the inequality below.

Every term in n can be factorized into exp[ —P
XE(B,)], a multiplier corresponding to the exci-
tation energies due to the boundaries outside of

Bo, and a multiplier corresponding to 8 —B,.
Since we wish to obtain an upper bound on S, we
can neglect all contributions to d that correspond
to configurations with boundaries intercepting 8 .
As a result we ean cancel the contribution of
boundaries outside of B, in n/d. We can also can-
cel (up to some degree) the contributions coming
from 8 -Bo by finding appropriate contributions
to d for every possible choice of 8 —Bo.

First of all we can write

8 —8, = U, B,-,

where B; are the individual (maybe disconnected)
components of 8 —80 that are surrounded by the
same connected region. Each of the boundaries
8; can be labeled by an additional upper index in-
dicating the type of the region that surrounds it.
In each term of n the multiplier corresponding
to B -8, can be factorized into multipliers cor-
responding to 8,, i = 1, 2, . . . .

The contribution of 8,", k=1, 2, or 3, to the ex-

citation energy can be matched by the contribu-
tion of a boundary 8,.' that has exactly the same
shape as 8,' but it is shifted up by one unit if k
= 2, shifted down one unit if 0 = 3, and kept un-
changed if k=1. The orientation of spins inside
the boundaries 8,." is kept unchanged during the
translation (amounting to a, cyclic permutation of
the regions inside). The boundaries B,' would
give the same contributions to AE if it mere not
for the possible difference of the phase of the al-
ternating rows reaching B;" and 8,.' from the
outside. The phase of alternating rows that con-
nects the tmo boundaries 8,.' and 8,' is chosen
in such a way that they reach the boundary on the
right in the same phase as they reached the cor-
responding boundary 8,' or 8, .

If we change the phase of an alternating row
reaching a boundary the cha.nge of the energy mill
be Bg, 0, or —Bg. This can be seen by consider-
ing the contributions of the two 2x2 blocks of
spins that contain only the last spin from the al-
ternating row in question to aE (other blocks near
the alternating rom mill have unchanged contribu-
tions). Denoting the spin orientations in these
blocks by ab, c5, and ef in the three rows (a, b,

c, 5, e, f =+ 1 or —1) and subtracting the contribu-
tions to the energy for 5 =+ 1 and 5 = —1, we ob-
tain 2[(c —e)(c f) —(c —a)—(c —b)]g which is al-
ways equal to Bg, 0, or —Bg.

The contr Lbutlons that I keep ln d mill be that of
a configuration built up from the boundaries 8,-'
(no B,) and those obtained from this configuration
by horizontal independent shifting (by one unit to
the right) of the individual boundaries B,' (the
spins inside the shifted boundaries, D, ', are
kept unchanged). The phase of the alternating
rows that connect tmo regions mill be chosen to
stay unchanged at the boundary on the right-hand
side even after these shifts. Two boundaries can
never collide after the horizontal shifts, since
the distance of those boundaries has to be at least
two units (neighboring boundaries B," and B,
are separated by a portion of B, since k wni). The
collision of tmo regions E,. and 8, in the vertical
direction can a,iso be avoided if we consider that
this would only be possible if two boundaries 8,.'
and B,' are separated by the minimal two units
so that a stretch of Bo lies in betmeen them. Hom-
ever, by listing all the possibilities, one can see
that the arbitrariness in the definition of these
boundaries may be used to connect at least one of
them to Bo. In this case only the contribution of
one of the boundaries B, appears in the denomi-
nator; and the collision is avoided.
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We can write down the following inequalities at this point

n exp[- pE(B,)]-- exp -pz B,)] ' -exp[- EB,)]II I
d ',. exp[- pE(B,)]+exp[- pE(D, )J ', exp( —8c,gp)+ exp(- 8d, gp)

'

where Bq;g and Bd,g are the increases of the ex-
citation energy due to the change of the phase of
the alternating rows at the boundaries of 8, and

D, , respectively. Obviously c, +d, ~n, ~ V/3,
where n,. is the total number of alternating rows
that connect the outer part of Bo and B, and the
inner parts of B, and the left-hand side of B,-.
Using Eq. (9) we can write

n/d -= exp [—pE(B,) + 4pg V /3 J . (10)

Inequality (10) and the inequa. lity E(B,) ~ 8@V/3
(see theorem) imply the inequality (8).

Inequalities (7) and (8) combine immediately to
give

where h is the length of B,. The multiplier h'/4
is an upper bound on T(R(B,)). An upper bound

on the number of boundaries with length b is 2X
&&4", where the multiplier X comes from the
translation of the boundary over the lattice, the
multiplier 2 takes care of the possible exchange
of regions of type 2 and 3, and a multiplier 4'
gives an upper bound on the number of ways the

phase of the alternating rows reaching 8, from
both sides can be chosen. Finally a multiplier
4'" is included to account for the number of ways
a boundary of length b can be drawn starting from
a given point of the lattice. This number comes
from the fact that at each step of the drawing of
the boundary, we can continue in four different
ways and a graph of third-order vertices can be
drawn without lifting the pencil and going over
each line at most twice. '

It is easy to see from Eq. (11) that if G ~ (',
= 3.87 then the magnetization per site, (M)/X,
has a nonzero thermodynamic limit.

My final conclusion is that the phase transition
exists in two or more dimensions. Since 3I is

zero for a configuration in which all spins have
the same expectation value, (s„,) has to vary as
a function of the location below the critical tem-
perature, implying the spontaneous breaking of
translation invariance of the Hamiltonian. In
field theoretic language, the vacuum expectation
value of the field is zero for weak couplings, but
above a critical coupling it becomes nonzero and
coordinate dependent.

After the completion of the present work, I re-
ceived a paper of Cardy, ' who gave a field theo-
retic proof of the existence of a phase transition
in RFT. However, the proof is based on pertur-
bation theory. Since the perturbation expansion
of RFT has been proved to be divergent, " this
very original proof is seen to lose some of its
power. The author is indebted to Dr. Cardy for
the speedy communication of his results and to
Dr. J. J. G. Scanio for discussions.
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