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Renormalization group ideas are applied to the problem of first-order phase transitions
in Ising-like models. They support the existence of essential singularities as the coexis-
tence region is approached, at all temperatures below the critical temperature.

The renormalization group (RG) has been de-
veloped as a tool for describing the behavior of
systems which involve, in an essential way, the
cooperative behavior of a large number of de-
grees of freedom. Inthe context of phase tran-
sitions, one thinks conventionally of applications
to second-order phase transitions, where (es-
sentially) infinite-range fluctuations appear as
precursors of the transition between the ordered
and disordered states. There do exist many ap-
plications of the RG to the ordered state' where,
e.g., in the Ising model or equivalent field mod-
els, one can study the problem of the first-order
transition between the two ordered states. These
applications have until now considered only the
effect of fluctuations away from a system which
is in a single ordered phase. However, the exis-
tence of other types of fluctuations in the coexis-
tence region of the two ordered phases of Ising-
like models has already been recognized by sev-
eral authors.? These other fluctuations corre-
spond to configurations in which large regions of
the different phases coexist. Such fluctuations
permit the restoration of the convexity of the free
energy to mean-field approximations® through the
existence of solitonlike solutions in spontaneously
broken field theories. The most concrete reali-

zation of this problem is seen in the formulation
of cluster or droplet models of condensation® (see
the work of Langer* and of Fisher® in particular
for an introduction to this subject). This model
predicts infinitely differentiable singularities.**®
Together with the proof® that all derivatives with
respect to H of the free energy of the two-dimen-
sional Ising model are finite at H=0, the axio-
matic work of Lanford and Ruelle” also provides
strong support for such singularities.

In this article we apply RG ideas to this prob-
lem. We formulate our approach in terms of Is-
ing-like models on a lattice, with the Hamilton-
ian

3/kT=~-K23S;S;-H), S;+0.T., 1)

Gij) i

where (ij) specifies a nearest-neighbor sum, K
is the conventional nearest-neighbor coupling (K
=J/kT), H represents an external field, and O.T.
stands for any other types of interactions which
may or may not be required to be included in 3C.
We are interested in the partition function Z

=27 exp(-3/kT), and other quantities such as the
spontaneous magnetization M =S, exp(- ¥C/kT)/Z,
in the coexistence region where H (and all other
spin-ordering fields in O.T.) tends to zero at all
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FIG. 1. The simplest phase diagram for the system
described by Eq. (1). The RG trajectory shows how a
point A near the coexistence region passes by the fixed
point H=0=1/K on its way to the point B where the low-
temperature, high-field approximation can be applied.

temperatures below the critical temperature (K
>KC). We assume here the simplest possible
phase diagram for (1}—a critical point and line
of first-order (in H) phase transitions down to T
=0 as in Fig. 1.

For arbitrarily small H, the existence of fluc-
tuations with large regions of the different phases
prevents a straightforward application of conven-
tional perturbation theories. We propose a con-
ventional RG solution; the physical system at
point A in Fig. 1 is reformulated in terms of a
system at point B, whose behavior can be ana-
lyzed by the well-known high-field, low-tempera-
ture series approximation.

The projection in the subspace H, K™* of the RG
flow from A to B is shown qualitatively in Fig. 1.
Its form is dictated by the following observations.
For H=0, we expect to have three fixed points at
K=0, K=K_,, and K=, (We imagine a projec-
tion of the flow into the H, K plane in which the
entire critical sheet is collapsed on to the point
K_). The existence of the critical fixed point is
established within the approximation schemes®!!
which have been developed so far. The high-tem-
perature series approximation in conjunction with
the decimation scheme® establishes conclusively
the existence of the fixed point at K=0 and pro-
vides a systematic expansion about it. The K=«
fixed point also exists in all the approximate RG
schemes although no method has yet been devel-
oped to provide a systematic expansion about the
K= fixed point,'?

Our main contention is that there is first a
transient region in which the system moves un-
der the RG transformation from 7 <7, towards
the fixed point at 7=0, which is approached ar-
bitrarily closely if H is sufficiently small. Thus,
it is the eigenvalues of the T=0, H=0 fixed point
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which control singularities on the coexistence
curve, The linearized recursion formulas about
the fixed point may be written (we discuss their
origin later)

K'=b""K, (2a)
"=plH, (2b)

where b is the change in length scale of the RG
transformation and d is the dimension of space.
We expect these relations to be valid up to cor-
rections of the type exp(— K+ aH) where a~ O(b).
So, as long as K is large and oH <K, the expan-
sion about the K = « fixed point should be permis-
sible,

After [ iterations (neglecting the initial tran-
sient iterations), we have K(V=p'?" Vg g
=p"H, At what value of / should we stop the it-
eration of the RG transformation? We argue, on
physical grounds akin to those applied in the
droplet model, that one should iterate to a value
I* which just approaches the range of validity of
the linearization about the K= « fixed point,
namely aH"* =K, An H®) of this order damps
out all clusters of the “wrong” phase, in the
sense that the “critical cluster” in the droplet
model is the size of the new lattice spacing.
Eliminating [*, we obtain

KO =K%/ (aH)* !, 3)

Since K is large initially, K**") (and hence H''")
is extremely large. Therefore we expect to be
able to apply the low-temperature, high-field ex-
pansion to the system K", H('") and hence obtain
a perturbation expansion for the thermodynamic
quantities of the original system as a power se-
ries in exp(- K**)) and exp(- H*"), i.e., in pow-
ers of

exp(- K%/H*™). (4)

These terms produce the essential singularities;
they are infinitely differentiable at H=0", but
clearly not analytic.

An additional attractive feature of the result (4)
is that in the limit 77— 0, with the “physical” J
and external field held constant (the 1/k7 factors
are extracted), the expression (4) tends to 0,

i.e., at T=0 there is no singularity as H- 0; this
is desirable because there are no fluctuations to
produce singularities at 7=0.

Ideally, one would like to be able to set up Egs.
(2a) and (2b) as the first terms in a systematic
expansion about the 7= 0 fixed point; this work is
in progress. Even without the existence of a sys-
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tematic expansion, the following arguments dic-
tate their forms:

(i) We know from symmetry that the recursion
formulas linearized for small H will be of the
form K'=f(K), H'=g(K)H |or a similar form if
O.T. in Eq. (1) must be included in the RG trans-
formation].

(ii) The form (2b) for the H equation (linearized
about the 7=0 fixed point) is necessary for the
existence of a spontaneous magnetization'?; it
must hold for all systems where the phase sep-
aration problem exists.

(iii) In order to establish (2a) we need consider
only the subspace of interactions even in the spin,
where we can exploit dual transformations in d
dimensions.'* An Ising model at low tempera-
tures (and H=0) duals into a high-temperature
model of interactions of Ising spins on the bound-
aries of (d - 1)-dimensional cubes. Decimation
on the latter model and inversion of the dual
transformation induces the result (2a), up to ex-
ponentially small corrections.

(iv) The result (2a) is also exhibited in a fairly
straightforward way in the Niemeijer and van
Leeuwen approach.® | At the first nontrivial or-
der, the new nearest-neighbor interaction is K
X (number of bonds connecting the two cell blocks)
for K large, i.e., K'=b%'K as required]. The
recursion formula (20) of Migdal’s paper'! also
displays Eq. (2a). We have not analyzed Kada-
noff’s method' systematically for high K. A dif-
ferent approach to first-order phase transitions
which does not produce the result (2a) has been
suggested by Subbarao.'®

We make the following remarks:

(i) Note that (2a) is also correct in one dimen-
sion. The exact recursion formula by decimation
is tanhK’ = (tanhK)® which gives for K large, K’
=K - 31nb, up to exponentially small corrections.
In fact one can combine this exact result with (2a)
to show the lowest order of an € expansion in 1
+ ¢ dimensions,'®

(ii) One puzzling feature which we do not under-
stand is that the result (2a) is produced only if
the new lattice is not rotated with respect to the
old. An example of this puzzle is provided by the
results of van Leeuwen’s work in Ref. 13, This
aspect requires further clarification.

(iii) For d >4, the critical behavior of the sys-
tem (1) is described by mean-field theory. One
might have been led to conjecture that mean-field
critical behavior might also be accompanied by
mean-field behavior in the coexistence region,
in the sense that the free energy might be contin-

uable into the coexistence region, to describe
metastable states.'” This conjecture is not sup-
ported by expression (4), which shows the exis-
tence of the essential singularity in any space di-
mensiond (>1).

(iv) In addition to the term (3), there are also
contributions to the free energy at each iteration
of the RG transformation. Within model analyses
these contributions are of the form

exp(— K‘") coshaH®, (5)

Both these contributions and the recursion rela-
tions [Egs. (2a) and (2b)] change character simul-
taneously at [* (allowing a well-defined summa-
tion to [ =, in principle). The sum of the terms
(5) up to I* gives a form of the free energy which
is similar to that of the droplet model. In fact 7*
is just that value of ! for which the critical clus-
ter size L, ~K/H is of order 1. However, there
is no asymmetry in expression (5) corresponding
to that of the droplet model, where approxima-
tions for the free energy involve summing over
clusters of the opposite phase in a background
parallel to H (or analyzing the sum of clusters,
up to the critical size L, of the “right” phase in
the “wrong” background).

Finally once a systematic low-temperature ex-
pansion is found for the RG approach, one can
calculate systematically the behavior near the
coexistence curve,

Despite the qualitative nature of much of the
above discussion, it is clear that it opens the
way for a new application of the renormalization
group to a problem of considerable interest.
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Lattice-gas phase boundaries have been calculated for the simple quadratic and honey-
comb lattices from the corresponding antiferromagnetic critical curves. Results were
obtained using nonlinear renormalization group methods with periodic cell clusters. The
result for the simple quadratic lattice is in excellent agreement with the existing temper-

ature-series result.

The recent discovery that some order-disor-
der transitions in certain superionic conductors
are pure Ising like' has revived interest in lat-
tice-gas theories.>® Many recent experiments
have been reported which measured the order pa-
rameters as a function of the temperature.*””
There is a definite need for better theoretical
predictions of the phase boundaries—i.e., the
critical concentration versus the temperature.
Here we wish to report the phase boundaries for
the lattice gas obtained, for the first time, by
using the method of the renormalization group.®°®
We report results for the simple quadratic (sq)
and honeycomb (hc) lattices. The sq lattice is
chosen for a direct comparison with the excel-
lent results of Bienenstock using the high-temper-
ature series.'®!' The other two-dimensional lat-

642

tice is interesting because of its applicability to
the superionic conductor g-alumina.®"? Several
experiments are currently under way to measure
order-disorder phase boundaries.™ % 14

The critical curve for the lattice gas is ob-
tained by first determining the critical curve of
the antiferromagnetic Ising model with a magnet-
ic field,*®-17

H;=-K,2,0,-K,); 0,0;. (1)
F] Gid)
We use the nonlinear renormalization group ap-
proach of Niemeijer and van Leeuwen.® As sug-
gested first by Nauenberg and Nienhuis,® the free
energy F,;(K,,K,) is obtained as an infinite ser-
ies, which converges rapidly. We also use their
method of cell clusters, with periodic boundary



